UNIVERSIDAD AUTONOMA DE NUEVO LEON FACULTAD DE INGENIERIA MECANICA Y ELECTRICA DIVISION DE ESTUDIOS SUPERIORES

OSCILACIONES ELECTROMECANICAS EN SISTEMAS DE POTENCIA

TESIS

QUE PARA OBTENER EL GRADO DE MAESTRO EN CIENCIAS EN INGENIERIA ELECTRICA, ESPECIALIDAD POTENCIA

> PRESENTA FERNANDO SANCHEZ TELLO

MONTERREY, N. L.

DICIEMBRE DE 1988

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN DIRECCIÓN GENERAL DE BIBLIOTECAS

UNIVERSIDAD AUTONOMA DE NUEVO LEON FACULTAD DE INGENIERIA MECANICA Y ELECTRICA DIVISION DE ESTUDIOS SUPERIORES

UNIVERSID QUE PARA OBTENER EL GRADO DE O LEON MAESTRO EN CIENCIAS EN INGENIERIA DIREC ELECTRICA, ESPECIALIDAD POTENCIA

PRESENTA

FERNANDO SANCHEZ TELLO

MONTERREY , N. L.

DICIEMBRE DE 1988

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN () DIRECCIÓN GENERAL DE BIBLIOTECAS

4

AGRADECIMIENTOS

En especial al Dr. Florencio Aboytes Garcia por su interés en la realización de este trabajo y un reconocimiento a su fecunda labor docente y profesional en el campo de la ingenieria eléctrica en México.

A la Comisión Federal de Electricidad por su apovo economico y la oportunidad de participar en el grupo de trabajo del programa Doctoral en Ing. Electrica de la UANL, de donde este trabajo surge.

A la Universidad Autónoma de Nuevo León por todas las facilidades docentes y administrativas en la culminación de este trabajo.

A todos mis companeros y amigos del plan doctoral por sus comentarios y apoyo, en especial al Ing. Rogelio Ramirez B., cuyos comentarios oportunos y amistad agradezco sinceramente. DIRECCIÓN GENERAL DE BIBLIOTECAS

DEDICATORIA

199

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN DIRECCIÓN GENERAL DE BIBLIOTECAS

CONTENIDO

RESUMEN	1
INTRODUCCION	з
CAPITULO I	
OSCILACIONES ELECTROMECANICAS EN SISTEMAS DE POTENCIA	
(CONCEPTOS BASICOS)	
I.1 Introducción	6
I.2 Ecuación Dinámica Característica	8
I.3 Ejemplo Ilustrativo	11
I.4 Tipos de Oscilaciones	16
CAPITULO LIERE FLAMMAM	
CALCULO Y ANALISIS DE MODOS DE OSCILACION	
ELECTROMECANICOS	
II.1 Introducción	18
II.2 Método de Análisis	
II.2.1 Linealización de ecuaciones	19
II.2.2 Reducción a la forma de un problema de	
Eigenvalores	21
UN.3 EAnálisis de Resultados A DE NUEVO LEON	
II.3.1 Máquina - Barra Infinita	24
DIREGC20 Dos Máquinas DEBIBLIOTECAS	30
II.3.3 Dos Plantas	38
II.3.4 Sistema Multimáquina	44
CAPITULO III	
MODELO LINEAL SIMPLIFICADO DE LA MAQUINA SINCRONA	
III.1 Introducción	52
III.2 Ecuación del voltaje interno (E')	52
III.3 Ecuación del Par	55
III.4 Ecuación del Voltaje Terminal	57
III.5 Resumen de Ecuaciones	58
III.6 Ejemplo Ilustrativo	60
III.7 Efecto de la Carga	62

CAPITULO IV

AMORTIGUAMIENTO DE OSCILACIONES ELECTROMEGANICAS EN SISTEMAS DE POTENCIA

IV.1	Pares d	e Sincronización y Amortiguamiento 60	5
٤.٧	Sistema	de Excitación	3
E.V1	Estabil	izadores de Potencia	3
	IV.3.1	Diseño de Estabilizadores de Potencia 81	Ĺ
	IV.3.2	Ejemplo Ilustrativo84	1

CAPITULO V

CONCLUSIONES Y RECOMENDACIONES

V.1	Conclusiones y Recomendaciones	86
APENDICE	TO NOMA	
EIGENVAL	ORESTANIAN	90
APENDICE	B	
SISTEMAS	DE PRUEBA	92
BIBLIOGR	AFIA	98
E		

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN DIRECCIÓN GENERAL DE BIBLIOTECAS

RESUMEN

En los últimos años, diferentes sistemas de potencia en el han experimentado la presencia de oscilaciones mundo. electromécanicas de baja frecuencia ante condiciones normales de operación. Estas perturbaciones se presentan como oscilaciones sostenidas de pequeña magnitud, y en casos extremos, dichas crecen con el tiempo, causando oscilaciones la salida de elementos del sistema.

El análisis de las oscilaciones puede ser muy complejo y la simulación digital detallada del fenómeno debe involucrar todos los factores o elementos que intervienen en el amortiguamiento de las mismas.

En un sistema de potencia de N generadores, se tienen N-1 modos de oscilación electromecánicas. Si cualquiera de estos modos no esta amortiguado, es posible tener oscilaciones electromecánicas sostenidas o crecientes en el tiempo.

El presente trabajo incluye una breve descripción de las oscilaciones electromecánicas y posteriormente presenta las bases teóricas para el cálculo y análisis de dichos modos de oscilación a través de modelos aproximados. El conocimiento de tales modos, permite comprender mejor el comportamiento dinamico de los sistemas eléctricos de potencia.

El calculo de los modos proporciona resultados que pueden ser usados en una simulación y hacer más eficiente el estudio del amortiguamiento del sistema Reconociendo al sistema de excitación como la principal causa de amortiguamiento negativo en el sistema. la tesis analiza conceptualmente la acción del regulador de voltaje y su efecto en las oscilaciones dinámicas. El efecto negativo del regulador se ilustra mediante diagramas fasoriales de las componentes del par electromagnético, al ocurrir un cambio en el sistema de excitación.

El análisis se complementa con el cálculo de las componentes del par ante pequeñas perturbaciones y un gran número de condiciones de operación. El estudio se realiza para diferentes modelos del sistema regulador-excitador, verificando en cada caso los resultados con simulaciones detalladas en el dominio del

tiempo.

El trabajo estudia el efecto de los estabilizadores de potencia y su acción de amortiguamiento es explicada mediante diagramas fasoriales. Se calculan en cada caso los pares de sincronización y amortiguamiento y el efecto resultante es verificado mediante simulaciones en el dominio del tiempo.

Se incluyen resultados con ejemplos de sistemas de potencia típicos que ilustran los conceptos presentados y muestran los tipos de oscilaciones y el efecto de controles en el amortiguamiento de las mismas. 2

INTRODUCCION

La operación normal de los SEP involucra pequeñas variaciones de velocidad ocasionadas por cambios normales de carga. Estas variaciones están caracterizadas en parte por oscilaciones. Generalmente, estas oscilaciones decrecen con el tiempo, pero en algunos casos pueden persistir o incrementar de magnitud. ocasionando el disparo de líneas aislando partes del sistema. Con algunas excepciones, estas oscilaciones son esencialmente espontáneas, iniciadas por disturbios menores.

oscilaciones inestables pueden ser causadas Las por interacciones entre varios generadores en una planta y tener primariamente efectos locales, 0 se pueden iniciar por interacciones entre grupos de generadores y tener efectos en una del sistema. Estas mucho más extensa últimas area SON y corregir. Ocasionalmente, generalmente difíciles de analizar eliminadas oscilaciones pobremente amortiguadas han sido regulador voltaje colocando el de del generador fuera de servicio, o en otras ocasiones al reducir el flujo de potencia en líneas o generadores críticos.

En sistemas multimáquina, las frecuencias de oscilacion de generadores principalmente los rotores de dependen de las inercias, las reactancias del sistema de transmisión la v condición de operación. Un sistema de N generadores tiene N-1 frecuencias de oscilación del rotor, cada una caracterizada con su propio modo de oscilación. Las frecuencias de oscilación y sus correspondientes modos pueden ser obtenidos mediante el cálculo de los valores y vectores característicos.

En contraste con lo anterior, el estudio del amortiguamiento generador requiere información detallada de todos del los controles del generador. El sistema de gobernación de velocidad puede contribuir con un efecto positivo o negativo al amortiguamiento del generador. Sin embargo, se ha observado que amortiguamiento de oscilaciones entre generadores depende el principalmente, de los cambios en los encadenamientos de flujo del generador debidos a variaciones en las corrientes de estator y voltaje del campo. El análisis del amortiguamiento es complejo, aún en modelos simples.

El trabajo analiza la manera en que los cambios en los encadenamientos de flujo del generador tienen influencia en las oscilaciones del rotor. El método de análisis consiste en la observación y cálculo de los pares de sincronización y amortiguamiento, para pequenas perturbaciones, de una máquina conectada a un gran sistema a través de una reactancia externa. Este circuito puede ser considerado como un equivalente de un sistema multimáquina reducido a un sistema de dos máquinas. Así, la reactancia externa y la barra infinita representan al sistema visto desde las terminales de la máquina en cuestión.

Desde el punto de vista de análisis, es interesante identificar el origen de la oscilación, calcular las frecuencias naturales, entender la física de del amortiguamiento, evaluar el efecto de controles en el amortiguamiento y proponer alternativas para el control de las oscilaciones [3].

Desde el punto de vista práctico, en la operación de sistemas de potencia se requiere tener recomendaciones precisas para minimizar el problema de oscilaciones y tener guias técnicas para influir en el diseño de controles de nuevas centrales generadoras [3].

Contenido de la Tesis

Capítulo I. Se presentan las bases teóricas conceptuales para el estudio de las oscilaciones electromecánicas en los sistemas eléctricos de potencia (SEP). 4

Capítulo II. Se describe un método de cálculo para los diferentes modos de oscilación presentes en un SEP. El método emplea un modelo aproximado para la representación de la máquinas en el sistema. Se analizan los diferentes tipos de oscilaciones a través del cálculo de los modos de oscilación en diferentes sistemas de prueba.

Capítulo III. Se desarrolla un modelo lineal simplificado para un sistema de una máquina alimentando un gran sistema. El modelo considera los efectos del sistema de excitación. Este modelo es usado en el cápitulo IV donde se analiza el problema del amortiguamiento de las oscilaciones.

Capitulo IV. Se estudia conceptualmente el amortiguamiento de las oscilaciones electromecanicas a través del cálculo de los diferentes pares en el rotor de la máquina. El efecto negativo del sistema de excitación en el amortiguamento del sistema es explicado mediante diagramas fasoriales y el uso de la técnica de valores propios. El capítulo analiza y explica el efecto de los estabilizadores de potencia en el amortiguamiento del sistema. Se presenta adicionalmente un procedimiento para el diseño de los estabilizadores para un sistema de una máquina y una barra infinita. DIRECCIÓN GENERAL DE BIBLIOTECAS

CAPITULO V. Se resumen los resultados importantes en el estudio de las oscilaciones electromecánicas observados en los capítulos anteriores, incluyendo en su caso, las recomendaciones correspondientes. 5

CAPITULO I

OSCILACIONES ELECTROMECANICAS EN SISTEMAS DE POTENCIA (CONCEPTOS BASICOS)

I.1 Introduccion

Al ocurrir un disturbio en un Sistema Eléctrico de Potencia (SEP), sea de una gran magnitud o solo un cambio mínimo en la carga, cada unidad generadora tenderá oscilar alrededor de su punto de operación, hasta alcanzar nuevamente un estado estable. Las características de estas oscilaciones son análogas al movimiento del sistema masa-resorte mostrado en la figura I.1. La naturaleza dinámica de estos sistemas mecánicos esta gobernada por la segunda ley de Newton, la cual relaciona fuerza y aceleración como :

(masa)(aceleración)+(fuerza de fricción)+(fuerza del resorte)=0

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

DIRECCIÓN GENERAL DE BIBLIOTECAS

Figura I.1. Sistemas mecánicos masa-resorte; (A) una masa y una referencia fija, (B) dos masas. Esta relación puede ser expresada por la ecuación diferencial de segundo orden:

$$M(d^{2}x/dt^{2}) + Dm(dx/dt) + K\Delta x = 0$$
 (I.1)

Dado que el valor de amortiguamiento mecánico Dm es relativamente pequeno, esta ecuación característica describe el movimiento como una oscilación sinusoidal amortiguada, cuya frecuencia de oscilacion es :

$$\omega_n = \sqrt{K/M} \quad rad / seg \qquad (1.2)$$

Estos sistemas mecánicos se comparan con los sistemas de potencia elementales mostrados en la figura I.2. La fig. I.2 muestra, para el caso A), un generador o grupo de generadores en una planta enviando potencia a través de un sistema de transmisión, con una reactancia externa equivalente X., a un

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN BIRECCIÓN CENERAL DE BIBLIOTECAS

(B) (H_1) H_2 H_3 H_4 H_4

Figura I.2. Sistemas de potencia elementales; A) una máquina contra una barra infinita, B)dos generadores o plantas con un enlace de interconexión.

gran sistema o barra infinita (frecuencia y voltaje constantes) . En este caso el movimiento relativo del generador contra la barra infinita (la cual no oscila), es similar al movimiento oscilatorio de la masa mecánica contra una referencia fija. La inercia total del rotor de la unidad generadora (normalmente dada como una constante H) actua como la masa en el sistema mecánico. Los cambios en la potencia eléctrica del generador para cambios en el ángulo de la máquina actuan como una fuerza restauradora similar al resorte en el sistema mecánico.

Las oscilaciones ocurrirán también entre los dos generadores o plantas , los cuales estan unidos a través de una linea de enlace , como lo muestra la figura I.2, caso B). Para este caso el modo particular de la oscilación característica estará entre los dos sistemas, uno contra otro, similar al sistema mecánico de dos masas presentado en la figura I.1, caso B).

I.2 Ecuación Dinámica Característica

Para una máquina síncrona con excitación de campo constante, se obtiene una aproximación de su movimiento dinámico, relacionando la aceleración angular del rotor del generador y los pares actuando sobre el rotor, de la misma manera que la aceleración lineal se relaciona con la fuerza en un sistema masa-resorte. La relación para una máquina síncrona es :

(inercia) (aceleracion angular) + (par de amortiguamiento)

+ (par eléctrico - par de la turbina) = 0

Ante cambios pequenos, el comportamiento se describe por una ecuación característica que tiene la misma estructura que la ecuación para el sistema masa-resorte. Esta es la llamada ecuación de oscilación :

 $(2H/\sqrt{2})d^2\partial/dt^2 + (D/\omega)d\partial/dt + K\Delta \partial = 0$ (I.3)

donde los parámetros estan definidos como :

- Δδ (radianes) desviación angular del rotor desde su punto de operación en edo. estable
- H (kW-seg/kVa) constante de inercia del rotor de la unidad generadora (o grupo de unidades
- D (pu pot/ pu cambio de frec.)coeficiente de amortiguamiento que representa efectos de fricción, amortiguamiento de la carga, etc.
- v (radianes /seg) frecuencia síncrona, 377 rad/seg para sistemas con 60 hz.

(pu AP / rad) coeficiente de sincronización

Similar a la fuerza restauradora del resorte en el sistema mecánico masa-resorte, el término $K_1 \Delta \delta$, representa la potencia sincronizante que actua para acelerar o desacelerar la inercia giratoria de la máquina. Para pequenas desviaciones del punto de operación , el coeficiente de sincronización K_1 es la pendiente de la curva potencia - ángulo en el punto particular de operación en estado estable, como lo muestra la figura I.3. Si óo es el ángulo de estado estable entre Eo y E'q, entonces la pendiente es simplemente la derivada de la función potencia-ángulo, y está expresado como :

$$K_{i} = d \operatorname{Pe} / d \delta | = (E'q \operatorname{Eo} / X'd + X_{\bullet}) \cos \delta o \quad (I.4)$$

$$\delta o$$

donde :

ĸ

E'q	voltaje detras de reactancia transitoria (p.u.)
Ео	voltaje de la barra infinita (p.u.)
Δ'X	reactancia transitoria del generador (p.u.)
Xe	reactancia externa (p.u.)
60	angulo entre E'q y Eo

9

Los sistemas de transmisión robustos se caracterizan por tener valores pequenos de X. y valores grandes de K₁, y de esta manera una mayor fuerza restauradora para mantener el sincronismo de las unidades generadoras.

La ecuación de oscilación (I.3) gobierna la respuesta dinámica del sistema de potencia con un comportamiento oscilatorio amortiguado, teniendo una frecuencia de oscilación aproximada de :

$$\omega_{n} \cong \sqrt{K_{i} \omega_{j} / 2 H} \qquad rad / seg \qquad (1.5)$$

La frecuencia modal inherente que se presenta, depende principalmente de factores como la inercia de la unidad, el tipo de unidad , las reactancias del sistema de transmisión y el nivel de carga del sistema.

Figura I.4. Sistema Equivalente MZD - GPL

1.3 Ejemplo ilustrativo

La figura I.4 presenta el circuito equivalente entre la unidad 3 de Mazatlan (MZD-U3) y el resto del Sistema Interconectado Nacional (SIN) en GPL-230 (Gomez Palacio). Para la unidad de MZD-U3, el resto del SIN es visto como una barra infinita (frecuencia y voltaje constantes). Para el cálculo de la frecuencia natural de oscilación para la unidad MZD-U3 se consideran los siguientes datos :

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

Z = 0.47 / 83.8° (entre MZD-GPL) V_{MZD} = 1.0 / 26.46° (P + j Q)_{MZD} = 1.81 / 6.37°

H____ = 10.59 seg

X'd = 0.09 p.u.

(todas las cantidades estan en p.u. en una base de 100 MVA) Cálculo del coeficiente de sincronización K_.:

$$I_{MZD} = [(P + jQ) / V_{MZD}]^* = 1.811 / 20.09^{\circ}$$
$$E_{MZD} ' = V_{MZD} + jX'dI_{MZD} = 1.032 / 35.4^{\circ}$$

 $K_{i} = (EV \neq |Z_{eq}|) \cos(\delta - \gamma) = 1.64$

$$\gamma = (\theta - 90^{\circ})$$

Cálculo de la frecuencia:

 $\omega_n = \sqrt{K_{\perp} \omega_2 H} = 5.4 \text{ rad/seg}$ f = 0.86 hz, T = 1.15 seg

Las figuras I.5 y I.6 muestran el comportamiento en el tiempo de la potencia eléctrica y la velocidad angular respectivamente, para la unidad MZD-U3 y la máquina equivalente del SIN identificada como GPL_{bi}. Se simula una desviación inicial de 2 rad/seg en la máquina MZD-U3. La figura I.7 presenta el comportamiento para el flujo de potencia activa en la linea 5-6.

El mecanismo de oscilación entre la unidad MZD-U3 y la máquina equivalente del SIN, puede ser explicado de la siguiente manera; debido a la diferencia inicial de velocidades entre máquinas, originada por el evento mismo, la tendencia natural del flujo de potencia es incrementarse en la dirección de GBI_{bi}. Esto lleva asociado un incremento en el ángulo de potencia de la máquina y una disminución en el voltaje terminal. El incremento de potencia máximo en la unidad MZD-U3 se presenta en el punto donde su velocidad llega a igualarse con la velocidad de GBI_{bi} (que no cambia).

La disminución de velocidad de la unidad MZD-U3 es ocasionada por la potencia desacelerante (Pm < Pe) debida al incremento de potencia de la unidad. Al igualarse las dos velocidades,el sentido del flujo de potencia entre máquinas cambia su tendencia. En ese punto se presenta también la desviación máxima para el ángulo de la unidad MZD-U3 y el voltaje terminal. La velocidad de la unidad MZD-U3 sigue decreciendo a causa de la energía desacelerante acumulada hasta ese punto, y seguira cayendo hasta el momento donde la potencia acelerante (que a partir de ese momento a empezado a adquirir) compense la energía desacelerante acumulada. Este ciclo se repite pero en sentido opuesto.

FIGURA I.5

U F COUCH

FLUJOS DE POTENCIA REAL OSCILACION NO AMORTICUADA

Esta oscilación ocasionada por efectos acumulados de energía acelerante y/o desacelerante, continuará indefinidamente si no existiera en el sistema alguna fuente de amortiguamiento que atenue las oscilaciones. El comportamiento de potencia eléctrica para la máquina GPL_{bl} (que mantiene constante su velocidad) esta regido por el movimiento angular de la máquina MZD-U3, presentandose de esta manera la oscilación de una máquina contra un gran sistema o barra infinita.

1.4 Tipos de Oscilaciones

Existen dos tipos de oscilaciones electromecánicas bién conocidas que causan problemas a los sistemas eléctricos de potencia. El primer tipo ocurre cuando una unidad generadora (o grupo de unidades) oscila con respecto al resto del sistema. Tales oscilaciones son llamadas oscilaciones en modo local. Son así porque el comportamiento esta principalmente llamadas localizado en una planta, con el resto del sistema experimentando los efectos en una proporción mínima. Las oscilaciones locales tienden a ocurrir cuando existe un enlace de transmisión muy débil entre una máquina y su centro de carga. Este es el caso de una central generadora enviando potencia a través de una linea de transmisión de gran longitud. Tales sistemas usualmente son modelados por una máquina, una linea de transmisión y una barra infinita.

La frecuencia del modo local característico esta generalmente en el rango de 1-2 Hz, dependiendo principalmente de la sistemas impedancia del sistema de transmisión. Los de transmisión robustos, generalmente tienen frecuencia naturales altas en modo local y una menor tendencia a la existencia de oscilaciones no amortiguadas.

Un segundo tipo de oscilaciones, conocidas como modos de oscilación entre areas, son mas complejas porque generalmente involucran combinaciones de muchas máquinas sobre una parte de un sistema oscilando contra máquinas en otra parte del sistema. La forma más simple de un modo de oscilación entre areas puede ser representado usando la configuración del sistema en la figura I.2 (B), involucrando dos sistemas de potencia separados o grupos de generadores conectados por líneas de interconexión.

La frecuencia característica de los modos entre areas esta generalmente en el rango de 0.1-0.6 Hz. Este rango es menor que el de frecuencias en modo local, como resultado de la inercia equivalente de la combinación de grupos de máquinas en el sistema y de la reactancia efectiva mas alta de las líneas entre sistemas.

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN © DIRECCIÓN GENERAL DE BIBLIOTECAS

CAPITULO II

CALCULO Y ANALISIS DE MODOS DE OSCILACION ELECTROMECANICOS

II.1 Introducción

El análisis de los modos de oscilación entre areas es dificil, porque tales modos generalmente involucran muchas máquinas y un de transmisión comple jo. Este análisis además sistema es dependiente del grado de precisión con el cual se representan los generadores, sistemas de excitación, estabilizadores de potencia, de gobernación de velocidad y las cargas en sistemas la simulación digital. La simulación detallada toma en cuenta todos aquellos factores que tienen influencia en el amortiguamiento de las oscilaciones. Sin embargo, como se mencionó anteriormente, la frecuencia de oscilación esta determinada primordialmente por la inercia de los generadores, la generación , las reactancias de la red y las diferencias angulares promedio entre generadores. DIKECCION GENEKAL DE BIBI

Comenzando con una representación clásica de cada máquina, es posible mostrar, con algunas consideraciones, que un sistema de potencia eléctrico de n generadores tiene (n-1) modos normales de (frecuencias naturales). En muchos sistemas oscilación de potencia, todas esas frecuencia son amortiguadas positivamente v las oscilaciones sostenidas generalmente no se presentan. En otros sistemas. la mayoría de ellas son positivamente amortiguadas, pero las oscilaciones en algunas frecuencias pueden ocurrir espontáneamente o persistir después de un disturbio. La frecuencia de estas oscilaciones se encuentra típicamente en el rango de 0.1-0.5 Hz.

El analisis de las oscilaciones dinamicas. conociendo los modos de oscilación y la forma característica de cada modo, ayuda en la comprensión del comportamiento del sistema y proporciona información que puede ser usada como dato en un programa de simulación detallado.

II.2 Método de Análisis

II.1 Linealización de ecuaciones

Las frecuencias naturales no-amortiguadas del sistema de potencia son calculadas a partir de las ecuaciones diferenciales que las describen, que son de la forma :

 $\ddot{\mathbf{x}} + \mathbf{a} \mathbf{x} = \mathbf{0}$ (II.1)

Para llegar a esta forma de ecuaciones, las ecuaciones de aceleración del generador son escritas sin el término de amortiguamiento, y la potencia de la turbina se considera constante. Los generadores son representados por el modelo clásico, un voltaje constante detrás de reactancia transitoria. La ecuación de la potencia eléctrica es linealizada.Esto se hace considerando los ángulos del rotor como el valor en estado estable mas una desviación incremental.

 $\theta_i = \theta_{i0} + \delta_i \tag{II.2}$

para cada generador la ecuación de oscilación se puede escribir como :

$$M_{i} = P_{Ti} - P_{Ei}$$
 (II.3)

de (II.2) se tiene que $\vec{\theta}_i = \vec{\delta}_i$ y entonces (II.3) se escribe como :

$$M_{i} \tilde{\delta}_{i} = P_{Ti} - P_{Ei} \qquad (II.4)$$

Si las cargas se convierten en impedancias y se consideran que X'd es la reactancia del generador y se realiza una reducción hasta los nodos internos de los generadores. La potencia eléctrica para cada generador está dada por :

$$P_{\mathbf{E}i} = -E_{i}^{\mathbf{Z}} \mathbf{G}_{ii} - \Sigma E_{i} \mathbf{E}_{j} \mathbf{G}_{ij} \cos(\theta_{i} - \theta_{j}) - \Sigma E_{i} \mathbf{E}_{j} \mathbf{E}_{ij} \sin(\theta_{i} - \theta_{j})$$

$$j=1,\ldots,n \quad j\neq i \quad (II.5)$$

 G_{ij} y B_{ij} son las componentes real e imaginaria de los términos de la matriz de admitancias reducida y G_{ii} es la componente real del término diagonal. La convención de corriente usada es entrando al nodo. Esto significa que los términos originales fuera de la diagonal son las admitancias de rama, y en general, las componentes imaginarias de los términos fuera de la diagonal en la matriz reducida tendrán el mismo signo como los términos de susceptancia normal; esto es $B_{ij} < 0$.

La ecuación (II.5) debe ser linealizada. De (II.2) se tiene que :

$$\theta_i - \theta_j = \langle \theta_{i0} - \theta_{j0} \rangle + \langle \delta_i - \delta_j \rangle$$

y considerando que AUTÓNOMA DE NUEVO LEÓN

$$\cos(\theta_1 - \theta_1) \simeq \cos(\theta_1 - \theta_1) + (\delta_1 - \delta_1) \sin(\theta_1 - \theta_1) + (11.6)$$

$$\sin(\theta_i - \theta_j) \simeq \sin(\theta_i - \theta_j) + (\delta_i - \delta_j) \cos(\theta_i - \theta_j)$$
(II.7)

Usando estas aproximaciones en (II.5) y reemplazando P_{Ei} en (II.4) tenemos la ecuación linealizada de la aceleración :

$$M_{ij} = P_{Ti} + E_{i}^{2}G_{ii} + \Sigma E_{ij}^{E}G_{ij} \cos(\theta_{i0} - \theta_{j0}) - (\delta_{i} - \delta_{j0}) \sin(\theta_{i0} - \theta_{j0})$$

considerando que en estado estable no existe aceleración ($P_{T_{L}} = P_{e_{1}}$) se tiene que :

$$P_{T_{i}} + E_{i}^{z} G_{i} + \Sigma E_{i} E_{j} G_{ij} \cos(\theta_{i0} - \theta_{j0}) + \Sigma E_{ij} E_{ij} \sin(\theta_{i0} - \theta_{j0}) = 0 \quad (II.9)$$

$$j = 1, \dots, n \qquad j \neq i$$

Consecuentemente, (II.8) se simplifica a :

$$M_{\tilde{\delta}_{i}}^{\tilde{\delta}_{i}} = -\Sigma E_{i} E_{j} G_{i} (\delta_{i} - \delta_{j}) \sin(\theta_{i0} - \theta_{j0}) + \Sigma E_{i} E_{j} B_{ij} (\delta_{i} - \delta_{j}) \cos(\theta_{i0} - \theta_{j0})$$

$$j = 1, \dots, n \qquad j \neq i \qquad (II.10)$$

II.2.2 Reducción a la forma de un problema de eigenvalores

mediante : DIRECCIÓN GENERAL DE BIBLIOTECAS

$$(lg_{ij}) + lb_{ij}) \delta_{i} = M_{i} \delta_{i}$$
 (II.12)

donde :

$$\mathbf{s}_{ij} = \mathbf{E}_{ij} \mathbf{E}_{ij} \mathbf{S}_{ij} \mathbf{$$

$$\mathbf{g}_{ii} = \Sigma \mathbf{E}_{ij} \mathbf{E}_{ij} \mathbf{G}_{ij} \mathbf{Sin} (\theta_{ij} - \theta_{j}) = -\Sigma \mathbf{g}_{ij}$$
(II.14)

$$\mathbf{b}_{ij} = \mathbf{E}_{ij} \mathbf{E}_{ij} \mathbf{E}_{ij} \mathbf{COS}(\theta_{ij} - \theta_{j0}) \tag{II.15}$$

$$b_{ii} = \Sigma E_{ij} E_{ij} \cos(\theta_{i0} - \theta_{j0}) = -\Sigma E_{ij}$$
(II.16)

tiene que :

$$[A] [\delta] = [\delta] \qquad (II.17)$$

donde

$$\mathbf{a}_{ij} = \mathbf{a}_{ij} \wedge \mathbf{M}_{i} \tag{II.18}$$

El cálculo de los modos de oscilación y sus formas características puede ser expresado ahora como un problema de eigenvectores (ver apéndice A). Si las oscilaciones incrementales del ángulo del rotor son descritas por :

$$|\delta| = |\mu| \sin(\omega t)$$
 (II.19)

[A] $|\mu| \sin (\omega t) = -|\mu| |\omega^2 \sin (\omega t)$ (II.22)

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

si (II.22) es válido para todos los valores en el tiempo, DIRECCIÓN GENERAL DE BIBLIOTECAS

$$(IA) - \omega^2 (II)) |\mu| = |0|$$
 (II.23)

debe satisfacerse. Si los eigenvalores λ_j y eigenvectores i μ_j son encontrados tales que :

$$(II.24) = \lambda_{i} II > |\mu_{i}| = 0$$

entonces las frecuencias naturales estan dadas por :

$$\omega_{i} = \sqrt{-\lambda_{i}} \qquad (II.25)$$

los eigenvectores correspondientes μ indican las amplitudes relativas de las oscilaciones del rotor de los generadores para una frecuencia dada (forma de oscilación) como se puede ver en (II.19) y también indica la desviación de velocidad relativa como se ve de (II.20).

El conocimiento de las frecuencias naturales y los cambios en las formas características de los modos es importante para entender el comportamiento de los sistemas de potencia y evaluar los efectos de cambios en las consideraciones de operación o en el diseno. Las desviaciones de frecuencia también ofrecen datos que permiten la simulación de un modo normal. La simulación se realiza dando una desviación de velocidad inicial en cada máquina que es proporcional a su desviación (forma característica) para cada modo en particular. Las desviaciones estan escaladas de tal manera de obtener algún valor de oscilación pico deseado. El resultado es una simulación de la frecuencia natural deseada relativamente libre de transitorios y de otras frecuencias.

Debe notarse que las no-linealidades del sistema son incompatibles con la existencia de sinusoidales puras en la simulación. Las diferencias máximas angulares tienden a mantenerse debido a las características no-lineales de transferencia de potencia. Adicionalmente, la transición de condición estacionaria a oscilatoria, produce un cambio en el valor de las cargas que son sensitivas al voltaje, lo cual excita transitorios y otras frecuencias. La motivación para simular cualquier frecuencia natural es determinar si esta frecuencia es amortiguada o no por el sistema.

IL3 Análisis de Resultados

II.3.1 Máquina - barra infinita

Se calcula la frecuencia natural de oscilación para la unidad G_1 mostrada en la figura II.1. Se considera una máquina de 353 MVA alimentando un gran sistema o barra infinita (G_0) a través de una linea de transmisión de 230 KV y 220 Km de longitud (ver apéndice B). Los datos de la unidad en una base de 100 MVA son los siguientes :

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN © DIRECCIÓN GENERAL DE BIBLIOTECAS

Figura II.1 Sistema elemental máquina-barra infinita.

Para el caso particular de 2 generadores, se tiene una sola frecuencia de oscilación. Esta frecuencia se obtiene de la ecuación (30) y su valor es de 1.15 hz . El vector característico asociado a este valor de frecuencia esta dado como [1.0 0.0].

La excitación de este modo en el tiempo se obtiene simulando en cada máquina, una desviación inicial de velocidad que es proporcional al valor asociado a cada máquina en el vector característico (forma característica) correspondiente. La desviación inicial es escalada para tener algún valor pico deseado de desviación de velocidad. Para este caso , se usó una desviación de 0.2 rad/seg para G y 0.0 rad/seg para la máquina G equivalente.

Los valores en los vectores característicos estan normalizados, es decir, que el valor máximo aparece como 1. Cada valor en el vector, representa la fracción con la cual cada maquina participa en ese modo (forma característica) . Para el ejemplo , solo G_{i} participa en este modo (valor 1 en el vector), mientras que la máquina G_{bi} no oscila (valor 0 en el vector), así se presenta el fenómeno de oscilación de una máquina contra un gran sistema o barra infinita.

El significado es, que todas las variables eléctricas en el sistema, presentarán la misma frecuencia de oscilación. Las figuras II.2-II.5 muestran el comportamiento en el tiempo para las velocidades angulares, voltajes nodales, potencia eléctrica y flujos de potencia activa entre la máquina G_y la barra infinita G_{bi} , todas con igual frecuencia de oscilación. Es interesante observar el comportamiento de la potencia eléctrica en ambas máquinas, aunque presentan la misma frecuencia de oscilación, en realidad estan encontradas, es decir, que mientras una potencia aumenta, la otra disminuye, o de otra manera, la potencia que una máquina da al sistema , la otra lo toma y viceversa.

25

SAD/SEC

FIGURA II.2

FIGURA II.3

FIGURA II.4

FIGURA II.5

II.3.2 Dos máquinas

La figura II.6 muestra un sistema de potencia elemental de dos máquinas finitas unidas a través de un enlace de 230 KV y 200 km de longitud. Las dos máquinas son iguales (ver apéndice B). El vector característico para el modo de oscilación presente en el sistema es :

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN © DIRECCIÓN GENERAL DE BIBLIOTECAS

Figura II.6 - Sistema elemental de 2 máquinas.

Al excitar este modo de oscilación, las unidades oscilarán una contra la otra. Esto puede observarse de los valores en el vector característico, los cuales indican una oscilación encontrada entre máquinas (signos opuestos) y de igual magnitud (idéntico valor absoluto) Así pues, el comportamiento del flujo de potencia en la linea de interconexión estará determinado básicamente por las diferencias angulares entre los rotores de ambas máquinas. Los valores máximos de este flujo ocurren para cada punto donde las velocidades de ambas máquinas son iguales. Las gráficas II.7-II.9 muestran el comportamiento en el tiempo de la velocidad angular, el flujo de potencia en el enlace y la potencia eléctrica en cada unidad.

El comportamiento opuesto entre potencias eléctricas es explicado por el desplazamiento angular en cada máquina, los cuales son de sentido opuesto e igual magnitud para mantener el balance de potencia en el sistema.

Si se consideran dos máquinas distintas para el sistema de la figura II.6 con parámetros :

Debe notarse la reducción en el valor de la frecuencia de oscilación. Esto es debido al incremento de la inercia equivalente del sistema. GENERAL DE BIBLIOTECAS

Esta forma característica se interpreta como una oscilación entre máquinas con una participación diferente para cada máquina. Así por ejemplo, la participación de la máquina Gz es de magnitud 0.7082 con respecto a la participación máxima de Gi que es de 1.0.La participación de cada unidad, depende de parámetros como la constante de inercia, el valor de reactancia X'd y de la estructura propia del sistema. Las figuras II.10-II.12 muestran el comportamiento de la velocidad angular, potencia eléctrica y flujo de potencia activa en la linea de interconexión para el caso con dos máquinas distintas.

CASJ 2 : ESTUDIO DE OSCILACIONES DOS MADUINAS FINITAS IGUALES F = 1.45 hz. T = 0.68 meg VELOCIDAD ANGULAR FIGURA II.7 HAD1 MADZ RADSEG CFE 377.5 1 377.3 377.1 UN 276.B . RAL Ð E BIBI - 3 376.6. 376.4 SEG 0.0 0.4 1.6 0.8 1.2 2.0

. 35

II.3.3 Dos plantas

Se calculan las (N-1) frecuencias naturales de oscilación para el sistema elemental de dos plantas y cinco unidades mostrado en la figura II.13. Los datos para el sistema se encuentran en el apéndice B . Se consideran 5 unidades iguales y todas en la misma condición de operación . La linea de interconexión es de 230 KV y 300 Km de longitud aproximadamente. La tabla I presenta los resultados obtenidos.

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

Figura II.13 Sistema de potencia elemental; Dos centrales

		kcion para e		de la rig.			
maq\modo	modo 1	modo 2	mode	3 mode	> 4	modo	5
Gı	1.0	-0.618	1.0	0.0		0.0	
Gz	1.0	-0.618	-0.5	1.0	0.0		
Gs	1.0	-0.618	-0.5	-1.0	0.0		
G4	1.0	1.000	0.0	0.0	1.0		
G 5	1.0	1.000	0.0	0.0	-1.0		
frecuencia,hz	0.0	1.16	1.72	1.72	1.72		

ceneradoras.

El modo 1 corresponde al modo de oscilación en estado estable ó de frecuencia cero. El modo 2 caracteriza el llamado modo de oscilación entre areas. En este modo, el grupo de máquinas conectado a la barra 2 (máquinas 4 y 5) oscilan contra las máquinas conectadas a la barra 3 (máquinas 1,2 y 3). el modo 3 caracteriza un modo de oscilación local, la máquina 1 oscila localmente contra las máquinas 2 y 3 conectadas a la misma barra 3. Debe observarse que la frecuencia para este modo es mayor que para el modo 2. En general las oscilaciones locales muestran frecuencias de oscilación mayores que los modos entre areas o grupos de máquinas. Para este ejempio, la oscilación de menor frecuencia esta presente para el modo 2.

El modo 4 presenta otra forma de oscilación local para las máquinas de la barra 3, la máquina 3 oscila contra la 2. El modo 5 caracteriza el modo de oscilación local para las máquinas conectadas en la barra 2.

Las figuras II.14-II.16 presentan el comportamiento de la diferencia angular, velocidad angular y potencias eléctricas para las 5 unidades en el sistema ante el modo 3. Es interesante notar que al presentarse localmente el modo 3 en la barra 3, el cambio de las variables eléctricas en los demás puntos del sistema será nulo. Así por ejemplo, el flujo en el enlace no cambia, ni la posición angular de los rotores para las unidades 4 y 5 conectadas a la barra 2.

La figura II.17 presenta el comportamiento de la velocidad angular de las 5 unidades ante el modo 2, el cual representa una oscilación entre grupos de máquinas.

ETCHDA IT 14

BAD'SEC

FIGURA II.16

•

Se calculan los cuatro modos de oscilación para las cinco máquinas del sistema multimáquina mostrado en la figura II.18. Todas las máquinas son diferentes y alimentan a la barra ó a través de líneas de transmisión de 230 KV (ver apéndice B) de diferentes longitudes. La tabla II presenta los resultados obtenidos.

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

DIRECCIÓN GENERAL DE BIBLIOTECAS Figura II.18. Sistema multimáquina.

náq\modo	modo 1	modo 2	modo 9	modo	4 modo	
Gı	1.000	1.0	0.351	7.07e-2	4.38e-2	
Gz	114	1.0	364	311	661	
Ga	125	1.0	456	774	1.000	
G4	443	1.0	1.000	0.119	7.03e-2	
05	153	1.0	711	1.000	0.253	

Como se aprecia de la tabla II, resulta difícil en sistemas de este tipo anticipar resultados. Adicionalmente a esto, las formas características para cada modo estarán cambiando en función de la condición de operación y estructura del sistema. Así, para este caso , se tiene que el modo 1 corresponde a una oscilación de la máquina G: contra el resto de las demás máquinas. El modo 2 corresponde al modo de oscilacion en estado estable (frecuencia cero). Los demás modos corresponden a oscilaciones entre grupos de máquinas, por ejemplo, el modo 3 representa la oscilación de las máquinas G: y G: contra las máquinas Gz, G: y G: En el modo 4 las máquinas Gz y G: oscilan contra las máquinas G:, G: y G: y G: y en el modo 5, la máquina 2 oscila contra el resto de las unidades.

Las figuras II.19-II.21 presentan los resultados de la simulación en el tiempo del modo 1 para la velocidad angular, potencias eléctricas y flujos de potencia. La figura II.22 muestra el comportamiento de la velocidad angular en el modo 4 y la figura II.23 los resultados del flujo de potencia ante el modo 3.

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

DIRECCIÓN GENERAL DE BIBLIOTECAS La tabla III presenta los modos y formas características para el

sistema de la figura II.18, ante una condición de carga diferente. Se considera una carga en la barra ó de 1000 MW y 450 MVARS, cada máquina participa con 225 MW excepto la máquina Gi, la cual lo hace con 156 MW. Debe notarse el valor de frecuencia y formas obtenidas para este caso y su diferencia respecto a las presentadas en la tabla II. En general, a medida que la carga del sistema se incrementa, el valor de frecuencia natural mínima en el sistema tiende a ser menor.

Tabla III. Modos de oscilación del sistema de la fig. II.18 ante una diferente condición de carga.

maq\modo	modo 1	modo	2 modo	3 modo	4 modo 5
Gi	1.00	1.0	0.467	111	0.023
Gz	09	1.0	474	340	576
Ga	03	1.0	163	1.000	102
G4	45	1.0	1.000	131	0.039
G 5	08 1.0		516	223	1.000
frecuencia,hz	2.15	0.0	1.26	0.84	0.99

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN DIRECCIÓN GENERAL DE BIBLIOTECAS

SAD/SEC

FIGURA II.19

FIGURA 11.20

M.N

CAPITULO III

MODELO LINEAL SIMPLIFICADO PARA UNA MAQUINA SINCRONA

III.1 Introducción

Se considera una maquina sincrona, conectada a un gran sistema a través de una linea de transmisión, con resistencia (re) y reactancia (xe). Se efectuan las siguientes simplificaciones :

- o Se desprecia efecto de devanados amortiguadores.
- o No se considera resistencia en el devanado del estator.
- o Se desprecia el transitorio en el estator.
- c Los terminos ωΨ son considerados aproximadamente igual a ωrΨ. DIRECCIÓN GENERAL DE BIBLIOTECAS
- Se consideran condiciones de operación balanceadas y los efectos de saturación se desprecian.

III.2 Ecuación del voltaje interno (E')

Considerando los puntos anteriores, resultan las ecuaciones de campo siguientes :

$$v_f = r_f i_f + d\Psi_i/dt \qquad (p.u.)$$

 $\Psi = Lf \ if \ + \ Lmd \ id \qquad (p.u.) \qquad (III.1)$

Al eliminar if de (III.1), se tiene

$$v_{f} = (r_{f}/L_{f}) \Psi_{f} + d\Psi_{f}/dt - (r_{f}/L_{f}) L_{md} id \qquad (III.2)$$

Esta ecuación puede expresarse en el dominio de Laplace como :

 $E_{fld} = (1 + T'do s) E'q - (xd - x'd) Id$ (III.3)

en donde :

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

Usando estas mismas definiciones, la segunda ecuación en (III.1) transformada se puede expresar como, BLIOTECAS

E'q = EI + (xd - x'd) Id

(III.5)

donde EI se define como,

 $EI = \omega r Lmd If.$

Para una máquina conectada a una barra infinita, la siguiente expresión relaciona el voltaje terminal del generador (Vodq) y la corriente del generador (iodq) para un ángulo de par dado 6.

$$I_{odq} = V_{00} \begin{bmatrix} 0 \\ -\sin(\delta - \alpha) \\ \cos(\delta - \alpha) \end{bmatrix} + re I_{odq} - \omega r Le \begin{bmatrix} 0 \\ -I_{q} \\ Id \end{bmatrix}$$

donde V ∞ y α representan la magnitud y el ángulo de fase del voltaje en la barra infinita.

Usando las ecuaciones normalizadas para el voltaje terminal se cumple:

 $Vd = -\omega r Lq Iq = -Vco sin(\delta - \alpha) + re Id + \omega r Le Iq$

(III.6)

$$V_{q} = \omega r Ld Id + \omega r Lmd If = V \infty \cos(\delta - \alpha) + re Iq - \omega r Le Id$$

al expresar (III.6) en la forma incremental, para pequenos
cambios se obtiene
$$0 = -re \Delta Iq + (xd + xe) \Delta Id + \omega r Lmd If + V \infty \sin(\delta o - \alpha) \Delta \delta$$
$$0 = -re \Delta Id - (xq + xe) \Delta Iq + V \infty \cos(\delta o - \alpha) \Delta \delta$$
(III.7)
UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

Rearregiando (III.5) y (III.7), resulta DE BIBLIOTECAS

-(x'd+xe) ΔId + re $\Delta Iq = \Delta E'q$ + V $\infty \sin(\delta o - \alpha) \Delta \delta$

 $\mathbf{r} \bullet \Delta \mathrm{Id} + (\mathbf{x} + \mathbf{x} \bullet) \Delta \mathrm{Iq} = \mathbf{V} \mathbf{\omega} \cos(\delta \mathbf{o} - \mathbf{a}) \Delta \delta \qquad (\mathrm{III.8})$

al resolver (III.8) para $\Delta Id y \Delta Iq$, se obtiene

$$\begin{bmatrix} \Delta & \text{Id} \\ \Delta & \text{Iq} \end{bmatrix} = K_{I} \begin{bmatrix} -(x_{q}+x_{e}) & r_{e} \cos(\delta o - \alpha) - (x_{q}+x_{e}) \sin(\delta o - \alpha) & \Delta \delta \\ r_{e} & (x'd+x_{e}) \cos(\delta o - \alpha) + r_{e} \sin(\delta o - \alpha) \end{bmatrix} \begin{bmatrix} E'q \\ V & \Delta \delta \end{bmatrix} (\text{III.9})$$

donde
$$K_{I} = 1 / (r_{e}^{2} + (x_{q} + x_{e}) (x'_{d} + x_{e}))$$
 (III.10)

Si Ald se substituye en una versión incremental de (III.3), resulta:

$$Eftd = (1/K_3 + T'do s) \Delta E'q + K_4 \Delta \delta \qquad (III.11)$$

definiendo

$$1 / K_3 = 1 + K_1 (x_d - x'_d) (x_q + x_o)$$
 (III.12)

K4 = V ∞ K1 (xd-x'd) ((xq+xo) sin($\delta o - \alpha$) - re cos($\delta o - \alpha$))

de (III.11) y (III.12) finalmente se obtiene

5	ALERE FLAMMAM VERITATIKS		K4 K9	/111 / ^ >
AF, d .	1 + Ks T'do s		1 + K3 T'do s	 (11.13)
E		TT	ANTI	

Ka se identifica como un factor de impedancia que toma en cuenta el efecto de la impedancia externa, a K4 se le relaciona como un efecto desmagnetizante (efecto de armadura) para un cambio en el ángulo del rotor.

DIRECCIÓN GENERAL DE BIBLIOTECAS

III.3 Ecuación del par

El par electromagnético Te en función de voltajes y corrientes en los ejes directo y cuadratura de la máquina se expresa mediante:

$$Te = (Vd Id + Vq Iq) pu \qquad (III.14)$$

donde Vd y Vq son las componentes rms del voltaje terminal en pu. Las expresiones normalizadas para Vd y Vq son;

Vd = - xq Iq

 $V_q = xd Id + \omega r Lmd If$ (III.15)

usando (III.5), la segunda ecuación de (III.15) puede escribirse como,

$$V_{q} = x'd Id + E'q$$
 (III.16)

combinando (III.15) y (III.16) en (III.14), el par se expresa como

$$Te = (E'q - (x_q - x'd) Id) Iq$$
 (III.17)

al linealizar (III.17) se obtiene;

de (III.5) se calcula la condición inicial para este voltaje, EON

$$Eq_{2} = Er_{1} + (xd - xq) Id_{2} = Erq_{2} - (xd - x'd) Id_{2} + (xd - xq) Id_{3}$$

= $E'q_0 - (xq-x'd) Id_0$ (III.19)

Substituyendo (III.9) y (III.10) en (III.18) se obtiene la expresión incremental para el par como:

$$\Delta Te = KIV\omega \left(E_{q_{\alpha 0}} \left[re \sin(\delta o - \alpha) + (x'd + x_e) \cos(\delta o - \alpha) \right] + Iq_{o}(x_q - x'd)$$

 $[(xq+xe)sin(\delta o-a) - re cos(\delta o-a)]) \Delta \delta + Ki (lq_0 [re^2 + (xq+xe)^2]$

+ Eq_{ao} re) ΔE'qo

$$\Delta Te = K_1 \Delta \delta + K_2 \Delta E'q \qquad (III.20)$$

donde Ki representa el cambio en el par ante cambios en el ángulo del rotor, considerando encadenamientos de flujo constantes en el eje d. Kz es el cambio del par para pequeños cambios en los encadenamientos de flujo en el eje d para un ángulo del rotor constante.

III.4 Ecuación del voltaje terminal

VERITATIS

El voltaje terminal de la máquina síncrona está dado como;

$$Vt^2 = Vd^2 + Vq^2$$
 (III.21)

al expresar Vt es su forma incremental se obtiene,

$$\Delta Vt = (Vd / Vt_o) \Delta Vd + (Vq_o / Vt_o) \Delta Vq \qquad (III.22)$$

substituyendo (III.15) y (III.16) en (III.22), se tiene

$$\Delta Vt = -(Vd_{0}/Vt_{0}) \times_{q} \Delta Iq + (Vq_{0}/Vt_{0})(\times'd \Delta Id + \Delta E'q) (III.23)$$

donde finalmente, al reemplazar de (III.9) los valores para ΔIq y ΔId en (III.23) se calcula ΔVt como,

•DIRECCIÓN GENERAL DE BIBLIOTECAS

 $\Delta Vt = \{ (K_{I} V_{\infty} x'd V_{0} / Vt_{0}) | r \circ \cos(\delta \circ - \alpha) - (x_{q} + x_{0}) \sin(\delta \circ - \alpha)] - (K_{I} V_{\infty} x_{q} Vd_{0} / Vt_{0}) [(x'd + x_{0}) \cos(\delta \circ - \alpha) + r \circ \sin(\delta \circ - \alpha)]]$ $\Delta \delta + \{ (Vq_{0} / Vt_{0}) [1 - K_{I} x'd (x_{q} + x_{0})] - (Vd_{0} / Vt_{0}) K_{I} \\x_{q} r \circ \} \Delta E'q$ (III.23)

$$\Delta V t = K_5 \Delta \delta + K_\sigma \Delta E'q$$

donde, $K_5 = \Delta V t / \Delta \delta \Big|_{E'q=E'qo}^{Y}$

 $K_{\sigma} = \Delta V t / \Delta E' q | \delta = \delta \sigma$

57

(111.24)

III.5 Resumen de ecuaciones

Las ecuaciones (III.13), (III.20) y (III.24) constituyen las ecuaciones básicas para el modelo lineal simplificado de una máquina síncrona conectada a una barra inifinita:

$$\Delta E'q = \begin{bmatrix} K_3 \\ 1 + K_3 T'do s \end{bmatrix} \Delta E'ld - \begin{bmatrix} K_4 K_3 \\ 1 + K_3 T'do s \end{bmatrix} \Delta \delta (III.25)$$

$$\Delta Te = K_1 \Delta \delta + K_2 \Delta E'q \qquad (III.26)$$

$$\Delta Vt = K_5 \Delta \delta + K_6 \Delta E'q \qquad (III.27)$$

donde las constantes K1,...., Ko dependen de los parámetros de la red, las condiciones de operación y el voltaje de la barra infinita.

La figura III.1 muestra el diagrama de bloques resultante al combinar las ecuaciones (III.25)-(III.28). En el diagrama también se incluye el sistema regulador - excitador de la máquina como un sistema de primer orden, de esta manera el cambio en Δ Efid esta relacionado con el cambio en Δ Vt por;

$$\Delta E fld = \begin{bmatrix} -Ke \\ \frac{1}{1 + s Te} \end{bmatrix} \Delta Vt \qquad (III.29)$$

donde

Ke es la ganancia del regulador y

te es la constante de tiempo del regulador-excitador

El diagrama de la figura III.1 consta de dos lazos de control; uno eléctrico y otro mecánico. El lazo mecánico corresponde a la parte superior del dibujo y a la ecuación (III.28). El lazo eléctrico de la parte inferior corresponde a las ecuaciones (III.25) - (III.27) y (III.29) de la máquina.

Figura III.1 Diagrama de bloques modelo lineal para el síncrona simplificado de máquina conectada una un gran sistema.

En el mismo diagrama se observa que el ángulo de la máquina afecta directamante a los encadenamientos de flujo del campo después de un retraso de tiempo (Ka T'do). También se debe notar que el par de salida de la máquina depende del ángulo y de los encadenamientos de flujo del campo. Se considera que el diagrama constituye herramienta útil para la comprensión del una del sistema el comportamiento permite cálculo las Y para distintas componentes del par electromecánico.

III.6 Ejempo Ilustrativo

Calcular las ecuaciones básicas para el modelo lineal simplificado de una máquina síncrona alimentando a un gran sistema. La figura III.2 muestra las condiciones iniciales para el sistema considerado. Todas las cantidades estan dadas en por unidad respecto a la base de la máquina.

Idq =
$$[e^{-j\delta'} = 0.404 - j 1.094$$
 (III.33)

Las componentes de Vt se obtienen de [5] como,

$$V_q = Vt (Vt + x_q I_q) / Vq = 0.7787$$
 (III.34)

$$Vd = -Iq xq = -0.6262$$
 (III.35)

De las ecuaciones (III.12), (III.20) y (III.24) se calculan las constantes;

$$K_1 = 0.9779$$
 , $K_2 = 1.0941$, $K_8 = 0.360$
 $K_4 = 1.4005$, $K_5 = -0.1027$, $K_6 = 0.4332$

Finalmente las ecuaciones para el modelo simplificado de la máquina quedan como:

$$\Delta E'q = \begin{bmatrix} 0.36 \\ 1 + 2.16 \\ \$ \end{bmatrix} \Delta E'ld = \begin{bmatrix} 0.5041 \\ 1 + 2.16 \end{bmatrix} \Delta \delta (III.36)$$

$$\Delta Te = 0.9779 \quad \Delta \delta + 1.0941 \quad \Delta E'q \qquad (III.37)$$

$$\Delta Vt = -0.1027 \quad \Delta \delta + 0.4332 \quad \Delta E'q \qquad (III.38)$$

Para este ejemplo, la figura III.4 mustra el comportamiento en el tiempo de las variables $\Delta \omega$, $\Delta \delta$, ΔE fld, y ΔE 'q ante una entrada impulso al sistema.

Para el sistema de la figura III.2, las constantes Ki,.., Ko se evaluan para diferentes condiciones de operación. Los resultados obtenidos se presentan en la figura III.5. De ellos es importante hacer notar:

a) La constante Ka es un factor de impedancia y es independiente de la carga de la máquina.

b) Las constantes K₁, K₂, K₄ y K₆ son positivas para todos los casos, mientras que K₅ es negativa en casi todos los puntos. Esto es significante - como se analizará mas adelante - en el estudio del amortiguamiento. En [4] se reportan casos donde las constantes K₁ y K₄ pueden ser negativas. Esto ocurre cuando se tiene carga local y se cumple que ro > xo para factores de potencia bajos y alta demanda reactiva.

FIGURA III.4 Comportamiento en el tiempo para la velocidad, ángulo, Efld y Eq para el sistema de la fig. III.1 ante una entrada impulsional.

KI

₹₹

64

FIGURA III.5 Efecto de la carga en las constantes del modelo de la fig. III.1

c) De la ecuación (III.20) se observa que Ki disminuye incrementando las reactancias de la máquina y el sistema. También se ve afectada por la condición de carga. En la mayoría de los casos prácticos Ki es positiva

CAPITULO IV

AMORTIGUAMIENTO DE OSCILACIONES ELECTROMECANICAS EN SISTEMAS DE POTENCIA

IV.1 Coeficientes de Sincronización y Amortiguamiento

A) estudiar la física del amortiguamiento en sistemas eléctricos de potencia es importante enfatizar los conceptos del par de sincronización y par de amortiguamiento. A una frecuencia de oscilación dada, la máquina síncrona desarrolla dos pares; el primero, llamado de sincronización, está en fase con la posición máquina. El segundo, angular del rotor de la llamado de amortiguamiento, está en fase con la velocidad de la máquina. Así, el par desarrollado por cualquier medio, puede ser separado en estas dos componentes para su estudio. Una condición necesaria y suficiente para que el sistema sea estable es que ambos pares sean positivos.

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

Los pares de amortiguamiento son proporcionados por una variedad de fuentes: devanados amortiguadores, devanados de campo, estabilizadores de potencia, reguladores automáticos de voltaje, gobernadores de velocidad etc. Los primeros tres contribuyen con amortiguamiento positivo, los últimos dos pueden producir amortiguamiento negativo.

Un sistema que es estable sin regulador de voltaje se considera que tiene un nivel adecuado de sincronización. Si al incluir los reguladores de voltaje el sistema llega a ser inestable, se considera que los reguladores aportan un par de amortiguamiento negativo.

Por otro lado, si el sistema sin regulador de voltaje es inestable, entonces el par de sincronización natural PS insuficiente para mantener al sistema unido. Si la incorporación de los reguladores de voltaje hace al sistema estable, se dice sistema ha adquirido una estabilidad condicional aue el a través de un incremento de los pares de sincronización. Si el sistema es aún inestable con los reguladores de voltaje, existen inestabilidad posibilidades; una aperiódica C dos exponencialmente creciente) indica que el incremento en los pares no ha sido suficiente, y una inestabilidad de sincronización oscilatoria indica que aun cuando los reguladores de voltaje pudieron haber proporcionado suficiente par de sincronización, también introducen un amortiguamiento negativo. Es por esto, que los efectos de ambos pares deben ser estudiados y evaluados separadamente para una mejor comprensión del fenómeno completo.

Del diagrama de bloques de la figura III.1, con s = $j\omega_n$, es tactible obtener separadamente y sin ninguna simplificación todos aquellos pares en fase con la desviación del ángulo $\Delta \delta$ y los correspondientes en fase con $\Delta \omega$. Así, se obtienen expresiones analíticas para un coeficiente de sincronización equivalente $Ks(\omega_n)$ y un coeficiente de amortiguamiento equivalente $Kd(\omega_n)$, la ecuación para el sistema equivalente, mostrado en la figura IV.1 es :

$$\Delta Tm - Ks(\omega) \Delta \delta - M s^{2} \Delta \delta - s Kd(\omega) \Delta \delta = 0$$
 (IV.1)

Al normalizar la ecuación anterior y considerar a $\Delta Tm = 0$ se tiene,

$$(s^{2} + 2\xi_{\omega}s + \omega_{z}^{2}) \Delta \delta = 0$$
 (IV.1a)

siendo

$$\mathbf{s}_{1,2} = (-\xi_n \pm j \sqrt{1-\xi_n^2}) \omega_n = \sigma \pm j \omega \qquad (IV.1b)$$

donde $\omega_n = \sqrt{\sigma^2 + \omega^2} = \sqrt{\frac{K_s(\omega_n) 377}{M}}$ en radianes y (1V.1c)

$$|\langle n \rangle = \frac{Kd(\omega_{n})}{2 \sqrt{377} \text{ Ks}(\omega_{n}) M} = \sigma / \sqrt{\sigma^{2} + \omega_{n}^{2}} \text{ en pu. (IV.1d)}$$

Se debe notar que en la ecuación (IV.1b) $| - \xi_n \pm j \sqrt{1-\xi_n^2} | =$ 1, lo cual indica que el incremento de amortiguamiento positivo o negativo o la parte real negativa del valor propio no modificará ω_n , pero si hará girar el vector, para ese valor propio, hacia el lado izquierdo del plano complejo. De esta manera, la ecuación (IV.1) normalizada permite tener una idea clara de la magnitud y grado de amortiguamiento para ese modo.

Figura IV.1 Lazo par-ángulo definiendo los pares de sincronización y amortiguamiento equivalentes.

Las expresiones condensadas para estos pares equivalentes estan dadas por;

$$K_{S}(\omega_{n}) = K_{1} + Real \begin{bmatrix} F_{1}(s) F_{2}(s) K_{2} \\ 1 - F_{1}(s)F_{2}(s) K_{3} \end{bmatrix} \begin{bmatrix} K_{3} - \frac{K_{4}}{F_{1}(s)} - \frac{s}{377} \end{bmatrix} (IV.2)$$

$$pu \text{ potencia} \neq radianes$$

$$Kd(\omega_{n}) = D + Im \begin{bmatrix} F_{1}(s) F_{2}(s) K_{2} \\ 1 - F_{1}(s)F_{2}(s) K_{3} \end{bmatrix} \begin{bmatrix} K_{3} - \frac{K_{4}}{F_{1}(s)} - \frac{s}{377} \end{bmatrix} \frac{377}{\omega}$$

pu potencia / pu velocidad

donde

$$F_{1}(s) = \frac{-Ke}{1 - s Te}$$

$$F_{2}(s) = \frac{Ks}{1 + Ks T'de}$$

(a)
 (b)
 Figura IV.2 Efecto de la ganancia Ke del sistema de excitación en los coeficientes de sincronización y amortiguamiento equivalentes. a) Ke = 10, b) Ke = 50.

La gráfica de la figura IV.2a muestra los valores de los coeficientes para la máquina de la figura III.2 para un gran número de condiciones de operación y una ganancia del excitador de Ke = 10. Los coeficientes se obtienen al variar la potencia real de la unidad en el rango de 0.2-1.0 pu para diferentes niveles de potencia reactiva. Se observa que a medida que la carga aumenta, el coeficiente de amortiguamiento se degrada notablemente, mientras que el coeficiente de sincronización se incrementa ligeramente. Este aumento se explica por el incremento en la frecuencia de oscilación en cargas altas, segun se observa en la figura IV.3. Es decir, que para una potencia reactiva dada, existe un incremento en el coeficiente Ks, de manera proporcional en la frecuencia, a medida que la potencia real de la máquina incrementa su valor.

Figura IV.3. Efecto de la carga en la frecuencia del sistema.

La fig. IV.2b, muestra los valores para los coeficientes Ks y Kd para una ganancia de regulador de Ke = 50. Por comparación con la fig. IV.2a, debe notarse el efecto negativo del regulador sobre el coeficiente Kd, especialmente con carga alta donde el sistema es inestable (Kd negativo). Los valores particulares para estos pares en la condición de carga mostrada en la fig. III.2 son :

Ke	Ks	Kd	
10	0.967	1.585	2
50	0.983	-3.677	

La figura IV.4 muestra para los dos casos anteriores el comportamiento en el tiempo para la desviación del ángulo $\Delta \delta$. Es notoria la inestabilidad del sistema por efecto del incremento en la ganancia Ke del excitador.

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN Figura IV.4 Efecto del sistema de excitación en el comportamiento para el A6 con a) Ke = 10, b) Ke = 50. DE BIBLIOTECAS

La frecuencia de oscilación en cada caso se obtiene de los valores característicos de la matriz de estado del sistema, la cual es resultado de expresar las ecuaciones (III.25)-(III.29) en la forma de variables de estado como,

donde A es la matriz de estado del sistema. (IV.3) se expresa como:

$$\begin{bmatrix} \Delta & \omega \\ \Delta & \delta \\ \Delta & E'q \\ \Delta & Erid \end{bmatrix} = \begin{bmatrix} -D/M & -K_1/M & -K_2/M & 0 \\ 377 & 0 & 0 & 0 \\ 0 & -K_4/T'do & -1/k_3T'do & 1/T'do \\ 0 & -K_5Ke/Te & -K_6Ke/Te & -1/Te \end{bmatrix} \begin{bmatrix} \Delta \omega \\ \Delta \delta \\ \Delta E'q \\ \Delta Erid \end{bmatrix} + \begin{bmatrix} 1/M \\ 0 \\ 0 \\ \Delta E'rd \\ 0 \end{bmatrix} \Delta Tm$$
(IV.4)

La tabla IV.I muestra los resultados para cada uno de los modos de oscilación del sistema, en los dos casos analizados anteriormente.

Tabla IV.I. Análisis de valores propios o modos de oscilación

	Ke = 50	
-0.1135 + j 7.2189	0.2507 + j 7.289	
-0.1135 - J 7.2189	0.2507 - j 7.289	
-19.205	-6.436	
- 1.174	-14.672	
$\xi_n = 0.015$	ξn = −0.034	
	-0.1135 + j 7.2189 -0.1135 - j 7.2189 -19.205 - 1.174 $\xi_n = 0.015$	

En la tabla IV.I se observa claramente el efecto de Ke sobre el término de amortiguamiento en el modo mecánico. Por el otro lado, el cambio en la frecuencia por efecto de la interacción entre el lazo mecánico y eléctrico debido al cambio en Ke es despreciable.

En este punto es importante hacer notar la identificación de cada uno de los modos de oscilación del sistema. Para este caso la identificación es muy sencilla, ya que los dos primeros valores corresponden al modo de oscilación mecánico. Sin embargo, existen casos donde se tienen varios modos de oscilación (valores propios) con frecuencias muy cercanas, dificultando la identificación. En este caso la identificación se realiza modificando un parámetro de algún lazo en particular, por ejemplo Ke.

La tabla IV.II presenta los valores propios obtenidos para el

mismo sistema de la fig. III.2 incluyendo para este caso un excitador tipo I del IEEE [7]. Aquí, la identificación de modos no es directa. Se presentan dos pares conjugados de valores propios con frecuencias muy semejantes. Al variar el parámetro Ka del excitador, se asocia claramente el segundo par conjugado al modo de oscilación mecánico, y el resto a los modos eléctricos. Debe notarse también que en general los modos eléctricos presentan un amortiguamiento mayor que los modos mecánicos.

Tabla IV.II. Identificación de modos del sistema

	Ka = 180	Ka = 100	l I
TON	-10000.0	-10000.0	
	9.89 + j 7.197	-14.03	
ALRE	-9.89 - j 7.197	- 5.63	
	1.24 + j 0.95	-1.21 + j 1.054	
A A	1.24 - j 0.95	-1.21 - j 1.054	
E	-0.00027 + j 7.08	-0.099 + j 7.11	
	0.00027 - j 7.08	-0.099 - j7.11	
datos para el ex	citador: $Kf = 0.04$	$K_{\rm E} = -0.17$ Tr	= 0.0001
		TE = 0.95 Kr	
UNIVER	Se = 0.95	UMA DE NUE	O LEUN
DIR	ECCIÓN GENER	AT DE RIRI IOTE	CAS

IV.2 Sistema de Excitación

En ausencia del regulador de voltaje, el punto de operación crítico para el generador es aquel donde $dP/d\delta = 0$, conocido en la literatura como el límite de estado estable. Mas allá de este punto, un incremento del ángulo hará que la potencia de salida del generador disminuya y la aceleración de la máquina se incremente teniendo una operación inestable. Haciendo referencia a la fig. III.1, al considerar un voltaje de campo constante, el efecto de esta componente de par esta descrito por la expresión:

 $\frac{\Delta T}{\Delta \delta} \begin{vmatrix} \Delta E'q \end{vmatrix} = - \frac{Kz K_3 K_4}{1 + s T' do K_3}$

De la fig. III.5 se conoce que los coeficientes son siempre positivos. De aquí que a frecuencia de oscilación cero ó estado estable, esta componente de par desmagnetizante esta dado por,

- (Kz K4 K3) Δδ

el cual es opuesto en signo a la componente de sincronización Ki $\Delta\delta$, de tal manera que el criterio de estabilidad con voltaje constante define el límite de estabilidad como la condición para la cual el coeficiente de sincronización en estado estable (Ki-Kz K3 K4) es cero.

La función primaria del regulador de voltaje es controlar el voltaje terminal del generador apropiadamente. Así, el incremento en la estabilidad obtenido con el uso del regulador debe ser considerado como un beneficio adicional. Es por consiguiente interesante aclarar como logra el regulador mejorar el limite de estabilidad.

Haciendo referencia a la fig. III.1, el par es función del ángulo y los encadenamiento de flujo de campo (K1 $\Delta\delta$ + K2 E'q). A medida que el ángulo de la máquina se incrementa, K1 $\Delta\delta$ crece, aumentando el par de salida mientras que los encadenamientos de flujo de campo disminuyen debido al término (-K4/ 1 + K3 T'do s) Δ δ . Es necesario compensar esta disminución para evitar la reducción del par y que la máquina se acelere. Por otro lado, a medida que el ángulo crece, el voltaje terminal se reduce, ya que K5 es negativo en la mayoría de los casos. En respuesta a este cambio, el regulador incrementa el voltaje de campo, originando un aumento en los encadenamientos de flujo de campo, resultando en un incremento del par eléctrico suficiente para detener la aceleración de la máquina.

Debido a los inherentes atrasos de tiempo en el regulador y

excitador, existe un sobretiro del ángulo de la máquina. Asi, el ángulo oscila alrededor de su valor final antes de alcanzar un estado estable. A medida que la condición de operación es más severa Ki se reduce más rápido que Kz, Ks y K4, de esta manera el regulador debe " trabajar mas duro " para restablecer el ángulo, con una mayor tendencia hacia la oscilación.

generalmente aceptado que las acciones normales Es de control retroalimentado del regulador de voltaje tienen el potencial de contribuir con amortiguamiento negativo, el cual puede causar modos de oscilación no amortiguados. Esto ocurre especialmente, en casos con sistemas de excitación de respuesta rapida y valores altos de ganancia. Una evidencia directa de esto es el reporte de varios casos de oscilaciones que fueron interrumpidas simplemente removiendo de servicio el regulador de voltaje [6]. Sin embargo, el sacar de servicio los reguladores no representa una solución real del problema, ya que se perderían beneficios propios del control del voltaje. El los problema generalmente es resuelto incluyendo al mismo regulador un control adicional para contribuir con amortiguamiento positivo en la estabilización de las oscilaciones. UNIVERSIDAD AUTONOMA DE NUEVO LEÓN

R

DIRECCIÓN GENERAL DE BIBLIOTECAS El efecto negativo del regulador, puede ser ilustrado

mediante relaciones fasoriales para los distintos componentes del par en el rotor de la máquina. El diagrama fasorial de la fig. IV.5 muestra las relaciones fasoriales de varias señales del generador para pequeñas desviaciones alrededor de su punto de operación y considerando encadenamientos de flujo constantes.

Para incrementos del ángulo positivos, la desviación de águlo $\Delta \delta$ esta 90 grados atras de la desviación de velocidad $\Delta \omega$, como se observa en la ec. (III.37), y 180 grados atras de la desviación de voltaje ΔVt . El eje vertical representa el eje de sincronización. Gualquier componente en la dirección positiva de este eje, tenderá a incrementar la frecuencia de oscilación de las oscilaciones dinámicas [1,5]. Cualquier componente sobre el eje horizontal está en fase con la velocidad de la maquina y contribuye con amortiguamiento positivo. Cualquier punto a la derecha del eje vertical cancelará el amortiguamiento natural proporcionado por la máquina. Por otro lado, todos los puntos a la izquierda del eje vertical indicarán oscilaciones dinamicas amortiguadas.

Figura IV.5 Relaciones fasoriales para una maquina con excitación fija.

Los efectos de control del regulador de voltaje sobre las oscilaciones pueden ser explicados al analizar las componentes de fase de la potencia restauradora originada por cambios en la excitación de la máquina. La fig. IV.6 muestra estas componentes para el sistema de la fig. III.2, con una ganancia Ke = 25 y una D = 1. El atraso de fase $\phi_1 \cong 90^{-0}$ entre la señal de error Δe o ~ ΔVt y el flujo del generador $\Delta E'q$ se debe al atraso de tiempo asociado a la acción del regulador/excitador y a la constante de tiempo del circuito de campo del generador T'do. La componente $\Delta E'q$ del generador crea un par en la misma dirección ϕ_1 que se suma al par original, obteniendo asi, un par resultante que tiene una componente de amortiguamiento negativo que vuelve inestable al sistema.

Figura IV.6 Relaciones fasoriales entre las componentes del par para una máquina bajo control del voltaje de excitación.

De la fig. III.1, la función de transferencia entre ΔVt y $\Delta E'q$ incluyendo el efecto de Kø, es calculada como:

El ángulo de Ge representa el atraso de fase en el lazo eléctrico que deberá ser compensado para obtener una magnitud de amortíguamiento adecuado en el sistema. El ángulo de atraso para Ge puede ser calculado como, atraso de fase para Ge = $\angle GE \mid_{S=j\omega}$ 6 (IV.6)

$$\mathcal{L}^{\text{Ge}} = \sigma + j \omega \qquad (IV.7)$$

al considerar la interación entre lazos. Es importante hacer notar que el ángulo de Ge depende de la frecuencia de oscilación del sistema, de esta manera la compensación requerida en cada instante siempre será diferente.

IV.3 Estabilizadores de Potencia

Es conocido que el regulador de voltaje puede introducir un par de amortiguamiento negativo que es proporcional a Ks [5,1]. De la fig. 5, se observa que Ks puede ser negativa, especialmente en casos de carga alta. Para compensar el amortiguamiento negativo introducido por el regulador de voltaje y mejorar el amortiguamiento del sistema en general, se introducen medios artificiales de producción de pares en fase con la velocidad. Las redes usadas para generar estas señales son los estabilizadores de sistemas de potencia. Las señales de los estabilizadores pueden ser el cambio de velocidad, la frecuencia eléctrica y la potencia de aceleración.

DIRECCIÓN GENERAL DE BIBLIOTECAS

diagrama de la fig. IV.7 muestra los principales El componentes de un estabilizador de potencia. La salida de) estabilizador de potencia deberá compensar los retrasos de tiempo del sistema de excitación y del generador. Esta compensación de fase es realizada por una función de adelanto-atraso (Ti - Ti) que proporciona adelanto de fase sobre el rango de frecuencias de interés. La mayoría de las aplicaciones usan dos estados ó bloques de compensación de fase, sin embargo en algunos casos se usan tres, para proporcionar una compensación de fase mayor, ó solo un estado cuando se requiere una cantidad menor de compensación. Esta señal es amplificada hasta cierto nivel deseado y enviada a un módulo de restablecimiento. La ganancia de amplificación Kes del estabilizador generalmente es maximizada dentro de las restricciones impuestas por la estabilidad del lazo de control del propio estabilizador. El limitador de salida mantiene la señal de control dentro de ciertos límites previniendo al estabilizador de interferir la operación normal del regulador de voltaje durante disturbios severos en el sistema.

El bloque de restablecimiento es seleccionado tal que active al estabilizador cuando las oscilaciones se inicien y lo desactive cuando las oscilaciones cesen. Es decir, que no debe interferir con la función regular de sistema de excitación durante la operación en estado estable a la frecuencia del sistema. Sus valores se seleccionan de tal menera que no tenga ningún efecto sobre la fase o la ganancia del estabilizador a la frecuencia de oscilación.

Figura IV.7 Modelo de un estabilizador de potencia.

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

Para una acción de amortiguamiento adecuada se deberá determinar el nivel de compensación de fase requerido y los ajustes en la ganancia del estabilizador, tales ajustes varian para cada unidad. También ocurre que los ajustes diseñados para suprimir oscilaciones entre areas, pueden no ser efectivas al amortiguar oscilaciones locales de máquinas. Así, los procedimientos de ajuste para los estabilizadores generalmente involucran estudios de la máquina y el sistema.

Siguiendo el caso de la fig. IV.6, la fig. IV.8 muestra las relaciones de fase que se tendrán con la inclusión del estabilizador. La salida del estabilizador deberá compensar, con una señal de adelanto, el atraso de fase ϕ i de la fig. IV.6. La entrada $\Delta \omega$ sensada por el estabilizador, es defasada un ángulo ϕ z

 $(\cong 45^{\circ})$ en la red de adelanto atraso. La salida del estabilizador es enviada al regulador de voltaje. Los retrasos de tiempo en el sistema de excitación, representados en la fig. IV.8 por el ángulo ϕ_9 ($\cong 50^{\circ}$), dan lugar a una fuerza actuante del estabilizador con una fase ϕ_4 ($\cong 6^{\circ}$) que se suma al par original. El par resultante tiene ahora una componente de amortiguamiento positivo. Así, el estabilizador no solo compensa el efecto negativo del regulador, sino que mejora considerablemente el amortiguamiento del sistema. Esto es verificado en la fig. IV.9 donde se presenta el comportamiento en el tiempo para $\Delta\omega$ como resultado de la respuesta a un impulso en el sistema de la fig. III.2.

Figura IV.8. Relaciones fasoriales para una unidad bajo control del regulador de voltaje con un estabilizador de potencia en servicio.

Figura IV.9. Comportamiento en el tiempo par Δω con la inclusión de un estabilizador de potencia.

IV.3.1 Diseño de Estabilizadores de Potencia

El diseño del lazo estabilizador puede ser realizado de dos maneras:

UNIVERSIDAD AUTÓNOMA DE NUEVO LEON a) a partir de la frecuencia natural no amortiguada ω_n del modo mecánico DIRECCIÓN GENERAL DE BIBLIOTEÇAS

b) a partir de la frecuencia compleja σ + j ω para el mismo modo.

Se considerará el segundo caso, definiendo posteriormente el primero como un caso especial de este. Un procedimiento general puede ser descrito como sigue:

1.- Encontrar la frecuencia compleja σ + j ω para el modo mecánico de un análisis completo del sistema como lo expresa la ecuación (IV.4).

2.- Encontrar el atraso de fase para el lazo eléctrico en la

fig. III.1, para esta frecuencia (ω).

De la ecuación (IV.7) el atraso eléctrico se define como

3.- Calcular el ángulo para la red de adelanto del estabilizador.

Si $\Delta \omega$ es la entrada de control y solamente un bloque de adelanto es suficiente, entonces para

se debera tener
$$\int (1+sT_1)/(1+sT_2) + \gamma = 0$$

de donde $T_1 = \frac{\tan(\phi - \gamma)}{\omega - \sigma \tan(\phi - \gamma)}$ (IV.9)

definiendo a ϕ como ϕ = tan⁻¹(ω T₂ / (1 + σ T₂) (IV.10)

La formulación puede ser modificada para bloques múltiples de compensación. Por ejemplo, si dos bloques idénticos son usados en el diseno, $\angle Ge(\sigma + j \omega)$ puede ser definido como, $\square / Ge(\sigma + j \omega) = 2 \gamma$, $\gamma < 0$ (IV.11)

permaneciendo las otras ecuaciones sin cambio.

La formulación también incluye el caso a) del diseño como un caso especial, haciendo $\sigma = 0$ y $\omega = \omega_n$ en estas ecuaciones.

4.- Cálculo de la magnitud del amortiguamiento.

De la ecuación (IV.1) normalizada,

 $| Kd (\sigma + j \omega) | \cong 2 \xi_n \omega_M$ (IV.12)

Si no se considera el efecto de K5 y K4 en la figura III.1, la

magnitud de amortiguamiento proporcionado desde $\Delta \omega$ a través del estabilizador, o sea la magnitud | Kd(σ + j ω) | esta dada por,

$$| Kd(\sigma + j\omega) | = Kes Kz | Gs(\sigma + j\omega) | | Ge(\sigma + j\omega | (IV.13))$$

de esta manera al combinar las ecs. (IV.12) y (IV.13) se obtiene el valor de la ganancia del estabilizador como,

$$Kes = \frac{2 \xi_n \omega_n M}{K_2 | G_s(\sigma + j\omega) | | G_e(\sigma + j\omega) |}$$
(IV.14)

5.- Diseño del bloque de restablecimiento o washout.

De la fig. IV.7 este bloque deberá ser de la forma,

 $\mathbf{Gr} = \mathbf{S} \mathbf{T} - (\mathbf{1} + \mathbf{S} \mathbf{T})$ (IV.15)

Como este bloque no deberá tener efecto sobre la fase ó ganancia a la frecuencia de oscilación, se selecciona un valor grande para T, tal que (s T) es mucho mayor que la unidad y

Gr | SIDAD AUTÓNOMA DE NUEVO LEÓN

En estado estable el bloque Gr no tendrá efecto ya que DIRECCIÓN GENERAL DE BIBLIOTECAS

s ∆ω ■ 0

(IV.17)

Realizar el diseño de un estabilizador para el sistema máquina barra-infinita de la fig. III.2 a partir de la frecuencia compleja (σ + j ω) y usando $\Delta \omega$ como la entrada de control. Los datos son semejantes a los mostrados en la fig. III.2 excepto que ahora Ke = 35 y se toman los siguientes valores para el diseño

 $\xi_n = 0.2$, $T_2 = 0.1$, T = 3

Los resultados obtenidos son los siguientes:

$$\omega = 7.2573$$
 / Ge = -86.1 |Ge | = 0.77
T₁ = 0.75 Kes = 5.38

para este caso se emplearon dos bloques de compensación tal que de acuerdo a los resultados 6 s queda como,

$$G_{S} = \frac{\Delta \omega}{\Delta V t} = \left[\frac{3 \ s}{1 + 3 \ s} \right] \left[\frac{1 + 0.75 \ s}{1 + 0.1 \ s} \right]^{2} (5.38)$$

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN Los modos del sistema calculados son:

DIRECCIÓN GENERAL DE BIBLIOTECAS

modos del sistema	sin Gs	con Gs
mecánico	0.1291 + j 7.22	-0.943 + j 3.77
* *	0.1291 - J 7.22	-0.943 - j 3.77
eléctrico	-4.1 , -16.8	-30.2, -2.95
control		-2.802 + j 16.02
		-2.802 - j 16.02
· · ·		-0.333

Se debe notar que el sistema es inestable sin el estabilizador y el amortiguamiento del nuevo modo mecánico es ahora,

$$\xi_n = 0.9427 / \sqrt{0.942^2 + 3.77^2} = 0.242$$

el cual esta muy cerca del valor de diseño.

Debe notarse el cambio apreciable en la frecuencia del el estabilizador, la sistema con razón cual P DOL amortiguamiento que se obtiene difiere del diseño original. La figura IV.10 muestra el el comportamiento en el tiempo para el cambio de velocidad ($\Delta \omega$) antes y después de la inclusion del estabilizador. Los coeficientes de sincronización y amortiguamiento equivalentes calculados para este caso son :

Estabilizador	Ks	Kd
NO	0.960	-1.85
SI	0.753	2.63

Los casos de interés al incluir el estabilizador son aquellos donde el cambio en la velocidad es insignificante. En estos casos se debería obtener exactamente el valor de amortiguamiento seleccionado.

Siempre es posible conocer todos aquellos modos o frecuencias problemas (0.1-0.6 Hz) en un sistema de potencia, de esta manera incluir un estabilizador de potencia, lo que se desea al es resolver el problema de amortiguamiento para esa frecuencia o frecuencias problemas sin afectar el modo propio de la unidad o cualquier otro modo del sistema, ya que de ocurrir haria para estabilizador calculado ajuste del inadecuado el una frecuencia que en este momento ya cambio. Dicho de otra manera, estabilizador debe ser tal que incremente eł el ajuste del en una cantidad amortiguamiento de la unidad coeficiente de coeficiente afecte visiblemente el de suficiente sin que sincronización lo que provocaria un cambio proporcional de la frecuencia natural de la unidad.

Figura IV.10 Comportamiento para Aw sin (a) y con (b) estabilizador

CAPITULO V

CONCLUSIONES Y RECOMENDACIONES

En un sistema de potencia multimáquina, existen varios modos de oscilación , especificamente : para N generadores, existen (N-1) modos de oscilación electromécanicos, cada uno de ellos está caracterizado por una frecuencia de oscilación y un factor de amortiguamiento.

El conocimiento de los modos de oscilación y de sus formas características incrementa notablemente la comprensión del comportamiento dinámico del sistema y proporciona datos que pueden ser usados en un programa de simulación detallado. La motivación para simular cualquier frecuencia natural es determinar si existe amortiguamiento para esa frecuencia.

oscilaciones que pueden ocasionar Existen dos tipos de problemas a los sistemas eléctricos de potencia. Las oscilaciones en modo local ocurren cuando un generador (o grupo de generadores) en una central esta oscilando contra el resto del sistema. Estas oscilaciones tienden a ocurrir cuando existe un enlace de transmisión débil entre la central y su centro de carga, o bién cuando las unidades estan operando en estado ángulo () 70°). La frecuencia estable con un valor alto de característica de una oscilación en el modo local está en el ranço de 1-2 Hz.

Las oscilaciones entre-areas involucran combinaciones de máquinas en una parte del sistema oscilando contra máquinas en parte del sistema. La frecuencia característica otra de oscilación de los modos entre-areas, está en el rango de 0.1-0.6 Hz. Este rango es menor al del modo local, debido al valor de reactancia equivalente mayor de las lineas entre grupos de máquinas.

Los sistemas que presentan oscilaciones en modo local, pueden ser modelados adecuadamente por una sola máquina, una linea de transmisión y una barra infinita. El análisis de oscilaciones entre-areas involucra muchas máquinas y un sistema de transmisión complejo, requiriendo una simulación detallada.

En el caso general, existen muchos modos de oscilación entre máquinas y grupos de máquinas. Estos modos pueden cambiar diariamente con la condición de carga y con los cambios en la configuración del sistema.

Los programas de simulación en el tiempo son usados para evaluar el comportamiento del sistema en función de cantidades como los flujos en líneas, desviaciones angulares en máquinas y voltajes nodales. Los programas para el cálculo de eigenvalores se usan para calcular las frecuencias naturales del sistema y analizar las respuestas de los generadores a esas frecuencias.

Los sistemas de excitación pueden mejorar los pares de sincronización, pero también pueden producir un amortiguamiento negativo en las oscilaciones. Las causas del amortiguamiento negativo se derivan de los valores de ganancia de los sistemas de excitación y las constantes de tiempo del generador.

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

El efecto negativo del regulador de voltaje puede ser explicado a través de las relaciones fasoriales para los distintos componentes del par del rotor de la máquina y del cálculo de los coeficientes de sincronización y amortiguamiento.

El análisis del sistema completo a través del cálculo de los valores característicos permite identificar los diferentes modos de oscilación en el sistema. Los modos con frecuencias muy cercanas pueden ser distinguidos variando artificialmente un parámetro en algún lazo del sistema.

Las señales suplementarias han sido usadas con éxito para introducir pares de amortiguamiento y de esta forma controlar las oscilaciones. Estas señales deben tener la relación de fase apropiada para compensar el atraso de fase producido por el generador. Los ajustes de estabilizadores varian para cada unidad en el sistema. Además, un ajuste diseñado para amortiguar oscilaciones locales puede ser inadecuado para eliminar oscilaciones entre areas. Esto hace necesario el estudio profundo de los coeficientes de sincronización y de amortiguamiento en función de la frecuencia de oscilación y los parámetros del estabilizador.

El mejor diseño para un estabilizador de potencia, dentro del rango de condiciones para el que fue calculado, es aquel que resulta en un cambio substancial en el coeficiente de amortiguamiento y sólo un cambio minimo para el coeficiente de sincronización. De esta manera el factor de amortiguamiento de diseño se obtiene exactamente.

Se recomienda continuar el estudio del amortiguamiento de las oscilaciones de baja frecuencia usando modelos más completos de la máquina en donde se incluyan todos aquellos elementos que tienen influencia en el fenómeno, como son los devanados amortiguadores , el efecto de la carga, los gobernadores de velocidad etc.

Se sugiere realizar el diseño y la coordinación de los estabilizadores de potencia utilizando modelos multimáquina. El criterio de diseño basado en una máquina-barra infinita es usado en la actualidad por algunos ingenieros, sin embargo, las oscilaciones de baja frecuencia son factibles de ocurrir debido a la falta de coordinación de los estabilizadores en su aplicación. Generalmente la técnica de los valores propios y procedimientos de prueba y error son empleados para este fin.

Se recomienda continuar con la busqueda de la solución óptima a la estabilización de la oscilaciones de baja frecuencia considerando el diseño de un estabilizador para diferentes modos, para un sistema multimáquina. Inicialmente se debe estudiar la detección de modos problema. El segundo problema a investigar es la selección más efectiva de unidades que serán equipadas con un estabilizador y finalmente la sintonización y coordinación óptima de controles (sistemas de excitación, estabilización y gobernación). La investigación se debe dirigir también hacia la búsqueda de la mejor técnica de solución para un sistema multimáquina. En la actualidad las técnicas más usadas son las de los valores propios, los métodos de la frecuencia (métodos iterativos en la búsqueda del menor valor propio) y las simulaciones en el dominio del tiempo.

analizar también el diseño de Se sugiere un control suplementario para el gobernador de velocidad que mejore el las oscilaciones baja frecuencia, amortiguamiento de de especialmente para estudios dinámicos de largo plazo.

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN DIRECCIÓN GENERAL DE BIBLIOTECAS

APENDICE A

EIGENVALORES

La mayoría de métodos de solución de ecuaciones diferenciales lineales con coeficientes constantes, hacen uso de las raíces de la ecuación característica del sistema. El programa implantado en la computadora personal BPM/AT en el Area de Control Noreste de la CFE, no evalua la ecuación característica como tal, en lugar de eso, calcula los eigenvalores (valores característicos) de la matriz de ecuaciones diferenciales de primer orden que describen al sistema. Estos valores son idénticos a las raíces de la ecuación característica.

Si los coeficientes de las ecuaciones diferenciales son todos reales, los eigenvalores serán reales o aparecerán como un par de números complejos conjugados. Un eigenvalor real α , dará lugar a un término de la forma C Exp(α t). Un par conjugado, $\alpha \mp \beta$, dara un término de la forma C Exp(α t). Un par conjugado, $\alpha \mp \beta$, dara un término de la forma C Exp(α t) cos(β t + θ). En ambos casos C y θ son constantes determinadas por las condiciones iniciales. Estudiando los eigenvalores de la matriz del sistema, la naturaleza del sistema puede ser determinada.

Si todos los eigenvalores son graficados sobre un plano complejo, su localización ofrece mucha información. Si cualquiera de los eigenvalores cae del lado derecho del plano complejo, tendrá parte real positiva. Estos términos crecerán con el tiempo, significando un sistema inestable. Los eigenvalores sobre el lado izquierdo del plano representan términos que desaparecen con el tiempo, y mientras más a la izquierda se encuentren ubicados, desaparecerán con mayor rapidez.

Para mejorar la respuesta transitoria del sistema es necesario, mover los eigenvalores hacia la izquierda, incrementando así el amortiguamiento del sistema. La distancia de los eigenvalores complejos desde el eje real, indica la frecuencia de los términos oscilatorios en la respuesta.

La matriz característica usada representará el sistema entero, no únicamente una máquina o grupo de máquinas. Si el sistema esta definido por una serie de ecuaciones diferenciales lineales de primer orden, en la forma

donde y es un vector columna de n variables que describen el sistema, y es un vector columna de las derivadas en el tiempo de esas variables, y IAI es una matriz de coeficientes de esas ecuaciones.LERE FLAMMAN

Si se asume que la forma de la solución de la ecuación (A1) es del tipo : v = C x e^{lt} (A2)

donde x es el vector de orden n y C es un escalar arbitrario. Cuando la ecuación (A2) se substituye en la ecuación (A1), el resultado en ECCIÓN GENERAL DE BIBLIOTECAS

$$[A] x = \lambda x \tag{A3}$$

de aquí se dice que λ es un eigenvalor y x un eigenvector de [A]. Un eigenvector es un vector que al ser transformado por una matriz arbitraria [A] sique o mantiene su dirección original. Asi pues, el problema surge al encontrar los eigenvalores y eigenvectores al resolver la ecuación (A3) para una matriz de grandes dimensiones y no simétrica. Variós métodos han sido probados para encontrar los eigenvalores de matrices de este tipo, pero sólo un método satisfactorio ha sido desarrollado, la transformación QR de J. G. F. Francis [4].

APENDICE B

Se presentan los datos y las condiciones iniciales para los sistemas de prueba utilizados en los ejemplos II.3.1-4

CASO 1 : máquina - barra infinita

NODO	VOLTAJE	ANGULO	CARGA		GA	GENE	RACION
				REAL	REACTIVA	REAL	REACTIVA
1	1.00000	0.00000	100	.00	45.00	2.88	49.83
2	0.99933	0.91885	1	0.00	0.00	0.05	-0.00
3	1.00345	12.39019	C	0.00	0.00	-0.01	0.00
4	1.00000	13.33235		0.00	0.00	100.00	-20.08
IR GIN		FLU	ijos en Nodo	LINEAS	Q		
E		2 5	1	97.12	-3.27		
	E 1	19	2	-97.12	4.83		
	2	3	4	-100.00	21.79		
	2		3	100.00	-20.08		
	~	~	~	07 00	0.07		

UNIVER 3^{2} SIDA 3^{2} AU 2^{3} ÓNO 99.99^{9} DE-21.80 EVO LEÓN

DIRECCIÓN GENERAL DE BIBLIOTECAS CASO 1 : MAQUINA - BARRA INFINITA

+								+	
I			F	°C	QC	MC			
ł			CF	כטי	(PU)				ł
ł			1.00	0000	0.45000	2			1
1			0.0	0000	0.00000	2			ł
8			0.0	0000	0.00000	2			8
1			0.0	0000	0.00000	2			19
 -								+	
Ĩ	NG	VG	PG	QMA	QMI		XDP	H	1
Ĩ		(P.U.)	(MW)	(MVAR)	CMVA	R)	(P.U.)	(P.U.)	ĥ
I	1	1.0000	0.0000	50.0000	-50.00	000	0.0010	999,0000	
Ì	4	1.0000	100.0000	50.0000	-50.000	00	0.0900	10.5900	

92

						-+
I	NE	NR	RES	x	YD	1
3			(P.U.)	(P.U.)	(P.U.)	1
	2	1	0.00000	0.01650	0.00000	ł
l	3	4	0.00000	0.01650	0.00000	Ĩ
ł	2	3	0.02930	0.19870	0.19080	
			********			-+

CASO 2 : DOS MAQUINAS

CASO 2 : DOS MAQUINAS

4	*****		++	
l.	PC	QC	MC	
ł	(PU)	(PU)		
	1.00000	0.45000	2	
1	0.00000	0.00000	2	
Į	0.00000	0.00000	2	
1	0.00000	0.00000	2	

+							+	
:	NG	VØ	PG	QMA	QMI	XDP	H	ł
ł		(P.U.)	(MW)	(MVAR)	(MVAR)	(P.U.)	(P.U.)	ł
I	1	1.0000	0.000	50.0000	~50,0000	0.0900	10.5900	1
1	4	1.0000	100.000	0 50.0000	-50.0000	0.0900	10.5900	ſ
							*	
1		NE	NR	RES	x	YD		;
1				(P.U.)	(P.U.)	(P.U.)		I
1		1	2	0.00000	0.01650	0.00000		1
1		3	4	0.00000	0.01650	0.00000		ł
I		2	3	0.02930	0.19870	0.19080		I
2							2	

NODO	VOLTAJE	ANGULO	CA	RGA	GENE	RACION
K			REAL	REACTIVA	REAL	REACTIVA
12	1.01000	0.00000	0.00 .	0.00	74.40	-4.73
2	0.97561	-20.07498	350.00	120.00	0.01	0.08
3	1.01400	-2.61497	15.00	5.00	-0.01	0.02
4	1.01000	0.02099	0.00	0.00	75.00	-4.70
5	1.01000	0.02099	0.00	0.00	75.00	-4.70
6	1.01000	-17.33525	0.00	0.00 N	75.00	57.10
7	1.01000	-17,33525	0.00	0.00	75.00	57.10

	FLUJOS	EN LINE	AS	
LINEA	NODO	NODO	P	Q
1	3	2	209.40	-1.23
1	2	3	-199.99	9.49
2	3	2	209.40	-1.23
2	2	3	-199.99	9.49
3	3	1	-74,40	8.15
3	1	3	74.40	-4.73
4	3	4	-75.00	8.18
4	4	3	75.00	-4.70
5	3	5	-75.00	8.18
5	5	3	75.00	-4.70
6	2	6	-75.00	-51.63

б	6	2	75.00	57.10
7	2	7	-75.00	-51.63
7	7	2	75.00	57.10

CASO 3 : DOS PLANTAS

						+
			PC	QC	MC	
			(PU)	(PU)		
			0.00000	0.00000	2	
			3.50000	1.20000	2	
			0.15000	0.05000	2	
			0.00000	0.00000	2	
	TONOA		0.00000	0.00000	2	
	Contract Production		0.00000	0.00000	2	
T	ALERE FLAMMA VERITATIS		0.00000	0.00000	2	
131		·		b / d d y, a k a a a a a		+
NG	VG	> PG	QMA	QMI	XDP	н
Z	(P.U.)	CMT	CMVAI	R). CMVAI	2) (P.U.	> (P.U.)
	1.0100	0.00	000 50.00		0 0.0904	10.5900
4	1.0100	75.0	000 50.00	-50.000	0 0.0900	5 10.5900
5	1.0100	75.0	50.00	00 -50.000	0 0.0906	5 10.5900
6	1.0100	75.0	00 50.00	000 -50.000	0 0.0900	5 10.5900
7	1.0100	75.0	50.00	00 -50.000	0 0.0906	5 10.5900
	DIREC	ĈIÓN	GENERA	L DE BIB	LIOTECA	S+
	NE M	R	RES	X	YD	\sim
			(P.U.)	CP.U.	> (P.U	.)
	3	2	0.04340	0.28910	0.27480	
	3	2	0.04340	0.28910	0.27480	
	3	1	0.00000	0.06280	0.00000	
	3	4	0.00000	0.06280	0.00000	
	3	5	0.00000	0.06280	0.00000	
	2	6	0.00000	0.06280	0.00000	
	2	7	0.00000	0.06280	0.00000	

CASO 4 : SISTEMA MULTIMAQUINA

4								+	
1				PC	QC	MC			1
:			C	PU>	(PU)				ł
1			0.0	0000	0.00000	2			ł
ł			0.0	0000	0.00000	2			I
I			0.0	0000	0.00000	2			I
1			0.0	0000	0.00000	2			t
I			0.0	0000	0.00000	2			I
1			4.5	50000	1.50000	2			ł
1			0.0	0000	0.00000	2			1
1			0.0	0000	0.00000	2			ł
1			0.0	0000	0.00000	2			1
		TONOM	0.0	0000	0.00000	2			I
* {{		ALEKE FLAMMAN						+	
: N	3	VG	PG	QMA	QMI		XDP	н	ſ
I SA		(P.U.)	(MW)	(MVAR)	CMVAI	R)	(P.U.)	(P.U.)	1
	1	1.0000	0.0000	50.0000	-50.000	00	0.0130	12.0000	q
1	10	1.0000	100.0000	50.0000	-50.0000		0.0900	20.0000	i
1	9	1.0000	100.0000	50.0000	-50.000	0	0.1000	9.0000	ł
1	8	1.0000	100.0000	50.0000	-50.000	0	0.0700	15.0000	ł
ı —	7	1.0000	100.0000	50.0000	-50.000	0	0.0900	10.5900	1
•UR		VERSH	DAD-AU	TONO	AA-DE-	NU	EVQ-L,	ION+	
l		NE	NR F	2ES	X		YD	R	1
1		DIREC	CION GE	P.U.)	CP.U.)	LIO	CP.U.)		1
1		2	60	.02930	0.19870		0.19080		ĺ
1		3	6 0	.00350	0.02330		0.02450		1
1		5	6 0	.01460	0.09730		0.09170		
8		4	6 0	.04340	0.28910		0.27480		
1		1	δ 0	00000	0.03300		0.00000		
1		2	70	.00000	0.03300		0.00000		I
ł		3	80	.00000	0.03300		0.00000		l
1		4	9 0	.00000	0.03300		0.00000		ł
1		5	10 0.	00000	0.03300		0.00000		l
								+	

BIBLIOGRAFIA

[1] Fernando Sánchez T., Oscilaciones en Sistemas de Potencia: Modos de Oscilación Parte I. Proyecto de investigación DIE-87-03, Programa Doctoral en Ingeniería Eléctrica, CFE - UANL, Agosto 1987.

[2] R. T. Byerly, D. E. Sherman and D. K. Mclain, Normal Modes and Mode Shapes Applied to Dynamic Stability Analysis. IEEE Power App. Sys., vol PAS-94, March/April 1975.

[3] Florencio Aboytes G, Oscilaciones Electromecánicas en Sistemas de Potencia. CFE Reporte Interno, Octubre 1987.

[4] El-Sherbiny M. K., and Metha D. M, Dynamic System Stability, Pte I, IEEE Trans. PAS-92:1538-46, 1973.

[5] De Mello F. P and Concondia C., Concepts of Synchronous Machine Stability as Affected by Excitation Control. IEEE Trans. PAS-88, 1969.

[6] C. Barbier R., E. Ferrari, and K. E. Johansson, Questionnare on Electromachanical Oscillation Damping in Power Systems Report on Answers. ELECTRA 1976.

[7] I.V. Litkens, M.G. Portnoy, V.A. Stroev, Yu A. Tikhonov, V. A. Venikov, Damping of Oscillation in Power System, Z.G. Khvoschinskaia, ELECTRA, Report 32-07.

[8] J.E. Van Ness, J. M. Boyle, F. P. Imad, Sensitivies of large, Multiple-loop control systems, IEEE transactions on Automatic Control , pp. 308-315 July 1965 vol AC-10.

[9] J.E. Van Ness, Evaluation of the dynamic characteristics of large power systems, PSCC Report 3.5, 1963. I 10 J P. Kundur, P.L. Dandeno, Practical application of eigenvalue techniques in the analysis of power systems dynamic stability problems, PSCC 1975, paper 3.2/7.

[11] M. Mobarak, D. Thorne, E. Hill, Contrast of power system stabilizer performance on Hydro and Thermal units, IEEE PAS vol 99, No 4 July/Aug 1980.

[12] R. Ramírez B., F. Aboytes G., Modelos de Maquina Sincrona, Proyecto de Investigación DIE-87-01, Agosto 1987, UANL - CFE.

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN ® DIRECCIÓN GENERAL DE BIBLIOTECAS
