UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN FACULTAD DE CIENCIAS QUÍMICAS

AISLAMIENTO Y CARACTERIZACIÓN DE LOS COMPUESTOS ANTIBACTERIANOS Y ANTITUBERCULOSOS DE *LARREA TRIDENTATA*, DETERMINACIÓN DE SU TOXICIDAD Y MECANISMO DE ACCIÓN DEL COMPUESTO MÁS ACTIVO

Por

JUAN MANUEL DE JESUS FAVELA HERNÁNDEZ Como requisito parcial para obtener el Grado de DOCTOR EN CIENCIAS con Orientación en Farmacia

Agosto 2012

Aprobación de la tesis:

"AISLAMIENTO Y CARACTERIZACIÓN DE LOS COMPUESTOS ANTIBACTERIANOS Y ANTITUBERCULOSOS DE *LARREA TRIDENTATA*, DETERMINACIÓN DE SU TOXICIDAD Y MECANISMO DE ACCIÓN DEL COMPUESTO MÁS ACTIVO"

Dra. María del Rayo Camacho Corona Presidente

Dr. Isaías Balderas Rentería

Secretario

Dra. Elvira Garza González

Primer Vocal

Dra. Susana Thelma López Cortina Segundo vocal

Dr. Eugenio Hernández Fernández Tercer vocal

Dra. María Teresa Garza González Subdirectora de Estudios de Posgrado

Agosto 2012

Revisión de la tesis

"AISLAMIENTO Y CARACTERIZACIÓN DE LOS COMPUESTOS ANTIBACTERIANOS Y ANTITUBERCULOSOS DE *LARREA TRIDENTATA*, DETERMINACIÓN DE SU TOXICIDAD Y MECANISMO DE ACCIÓN DEL COMPUESTO MÁS ACTIVO"

Dra. María del Rayo Camacho Corona

Evaluadora

Dr. Isaías Balderas Rentería Evaluador

Dra. Susana Thelma López Cortina Evaluadora

Dr. Eugenio Hernández Fernández. Evaluador

Agosto 2012

AGRADECIMIENTOS

Dra. María del Rayo Camacho Corona Facultad de Ciencias Químicas, UANL

Dra. Elvira Garza González Departamento de Microbiología, Facultad de Medicina, UANL

Dra. Verónica Rivas Galindo Departamento de Química Analítica, Facultad de Medicina,UANL

Dra. Noemí Waksman de Torres Departamento de Química Analítica, Facultad de Medicina,UANL

Dr. Jorge Ramírez Salcedo Unidad de Microarreglos, Instituto de Fisiología Celular, UNAM

Dra. Laura Álvarez Berber Centro de Investigaciones Químicas, Universidad Autónoma de Morelos

> **Dr. Sylvain Bernés Fluoriot** Faculdad de Ciancias Químicas, UANL

> > **Dr. Marco Flores Álamo** Facultad de Química, UNAM

Dr. Abraham García Cepeda Facultad de Ciencias Químicas, UANL

Dra. Mónica Azucena Ramírez Cabrera Facultad de Ciencias Químicas, UANL

CONACYT Proyecto 106107, Beca manutención

> PAYCYT Proyecto SA221-09

FCQ UANL Beca Manutención

Rectoría, UANL Beca Manutención

Comité tutorial Dr. Eugenio Hernández Fernández. Dra. Susana Thelma López Cortina Dr. Isaías Balderas Rentería

Dedicatoria

Dedico esta tesis

A Mis padres,

Juan Manuel y Olga, Por existir, Por educarme, Po alentarme, Por apoyarme Por bendecirme Toda mi vida ...

A mis hermanos Olga, Erick, Rogelio

> A mi sobrina Valentina

> > A dios

A Minerva Villanueva Rodríguez, por apoyarme siempre y estar a mi lado.

A Pedro Alfonso Rodríguez y Ángel Merino, fue agradable y divertido trabajar con ustedes amigos en el laboratorio de química de productos naturales.

A Nallely Sandoval en efecto querida amiga y buena compañera de laboratorio, aguante muchos de tus achaques y sin contar tus socarronerías y Nalleliñas. Qué tiempos aquellos verdad.

A mis Queridos QPN Adri Romo, Paty Guerrero, Jefe Aldo Clemente, Maestra Paty Esquivel, chicos berro Eunice Fernández y Rodrigo Quezada, Isis Iris Miranda, Rue Esther Baen, Fernando Oviedo, Daniela Gar, Ana Cecilia, Emiliano Santos Garza Gandallón. Ya mero se les quita lo pino y lo soqueiron.

A los genómicos Dr. Isaías Balderas Renteria, Ivette Aldama, Eder Arredondo, Raúl Reyna, Raúl Favela, Oliva Flores Cuevas, Héctor Ramírez, Fabián Olazarán, Enrique Cantú, Sandra Cortinas, Ana Vaquero y demás moleculeiros. Siempre bien entretenida la sobremesa de la comida, eventos sociales y la merienda con la amable y querida Doña Nieves. Miguelitoooooooo.....!!!

A Lulu Maya, Nidia Rivera, Carmín Chávez, Norma Ramos, Norma Alicia. Por un mundo sin color y agua limpia.

A Francisco Avalos, Laura Villareal, Dario Zaher, Karen Ontiveros, Misael, Erika Loredo.

A la buena Raza del Laboratorio Central del HU, Carlos Páez Castro , María de la Luz Acevedo, Samantha Flores, Perla López, Soraya Mendoza, Pablo Villareal, Paola Bocanegra, Néstor Casillas.

A todos mis demás amigos y compañeros de posgrado.

A todos los Doctores de la Facultad de Ciencias Químicas de la UANL que me brindaron sus conocimientos y me apoyaron.

Solo me queda por decirles a todos ustedes muchas gracias por su amistad

Y

No compitas con nadie, no tienes que demostrarle nada a nadie. No tienes que llegar adónde el otro llegó, sino superar tus logros y tus propios límites. ¡Sé la mejor versión de ti mismo, y seguro el rating va a estar de tu lado!

Extracto del libro "Gente Tóxica"

Por Bernardo Stamateas

Además recuerden

La vida es una obra de teatro que no permite ensayos.... Po eso, canta, ríe, baila, llora y vive intensamente cada momento de tu vida ... antes que el telón baje y la obra termine sin aplausos.

Charles Chaplin

No me despido.....

RESUMEN

Juan Manuel de Jesús Favela Hernández

Fecha de Graduación: Agosto

Universidad Autónoma de Nuevo León

Facultad de Ciencias Químicas

 Título del estudio: AISLAMIENTO Y CARACTERIZACIÓN DE LOS COMPUESTOS ANTIBACTERIANOS Y ANTITUBERCULOSOS DE LARREA TRIDENTATA, DETERMINACIÓN DE SU TOXICIDAD Y MECANISMO DE ACCIÓN DEL COMPUESTO MÁS ACTIVO"
 Páginas: Candidato para el grado de Doctorado en Ciencias con orientación en Farmacia.

Propósito y Método de estudio: Las enfermedades infecciosas son un peligro actual. La Organización Mundial de la Salud (OMS) reporta que han ocasionando alrededor de 17 millones de decesos al año a nivel mundial. Las enfermedades infecciosas de las vías respiratorias ocasionadas por bacterias son una de las principales amenazas para la salud pública mundial. La Secretaria de Salud reportó que hasta el 12 de junio del 2010, en todo el país se han registrado 12, 238, 438 casos de Infecciones Respiratorias Agudas. Por otro lado, Mycobacterium tuberculosis, el agente causal de la tuberculosis afecta a cerca de un tercio de la población mundial. La OMS reportó en el 2011, que en el año 2010 a nivel mundial hubo un estimado de 8.8 millones de casos nuevos de tuberculosis. A pesar de que se cuenta con los fármacos para tratar este tipo de infecciones hay una problemática que las bacterias han adquirido resistencia por lo que existe la necesidad de buscar nuevas alternativas. Las plantas medicinales proporcionan una fuente invaluable de nuevos agentes antibacterianos y antituberculosos. Es por ello que en el presente trabajo se planteó estudiar el extracto clorofórmico y metanólico de L. tridentata ya que en estudios anteriores dichos extractos mostraron actividad antibacteriana y antituberculosa. Por lo que se decidió llevar a cabo un estudio fitoquímico de ambos extractos para determinar la actividad antibacteriana, antituberculosa y citotoxicidad de sus constituyentes y determinar el mecanismo de acción del compuesto más activo.

Conclusiones y contribuciones: Del extracto clorofórmico se aislaron y caracterizaron tres lignanos: ácido dihidroguaiarético (Lt4), 4-epi-larreatricina (Lt7), 3'-demetoxi-6-O-demetilisoguaiacina (Lt8), y cinco flavonoides: 5,4'-dihidroxi-3,7,8,3'-tetrametoxiflavona (Lt2), 5,8,4'-trihidroxi-3,7-dimetoxiflavona (Lt3), 5,4'-dihidroxi-3,7,8-trimetoxiflavona (Lt5), 5,4'-dihidroxi-7-metoxiflavona (Lt6) y 5,7,4'-trihidroxi-3,8,3'-trimetoxiflavon (Lt6a). Del extracto metanólico se aislaron y caracterizaron: un lignano el 3'-demetoxi-6-O-demetilisoguaiacina (Lt8), y dos flavonoides: la 5,4'-

dihidroxi-3,6,7-trimetoxiflavona (Lt10) y 5,7,4'-trihidroxi-3-metoxiflavona (Lt15). El compuesto Lt10 se aisló por primera vez de L. tridentata. El compuesto más activo para ambos extractos (clorofórmico y metanólico) fue el lignano 3'-demetoxi-6-Odemetilisoguaiacina. Compuestos adicionales que contribuyeron con la actividad antibacteriana y antituberculosa del extracto clorofórmico fueron: el ácido dihidroguaiarético (Lt4), 4-epi-larreatricina (Lt7), 5,4'-dihidroxi-7-metoxiflavona 5,4'-dihidroxi-3,7,8,3'-tetrametoxiflavona 5,8,4'-trihidroxi-3,7-(Lt6), y dimetoxiflavona (Lt3). Compuestos adicionales que contribuyeron con la actividad antibacteriana y antituberculosa en el extracto metanólico fueron: 5,4'-dihidroxi-3,6,7trimetoxiflavona (Lt10) y 5,7,4'-trihidroxi-3-metoxiflavona (Lt 15). Es la primera vez que se reporta la actividad antibacteriana de Lt10 y Lt15. El lignano ácido dihidroguaiarético (Lt4) fue el más citotóxico para las células Chang y la 5,4'dihidroxi-3,6,7-trimetoxiflavona (Lt10) fue el compuesto menos citotóxico para las células Chang. El mecanismo de acción del compuesto más activo en este caso el lignano 3'-demetoxi-6-O-demetilisoguaiacina (Lt8) podría estar relacionado a la represión de proteínas del sistema transportador ABC que utiliza la bacteria como mecanismo de resistencia de acuerdo al análisis de expresión génica diferencial. No hay reportes de mecanismos de acción para este tipo de compuestos, por lo que estos datos son una nueva contribución importante.

FIRMA DEL DIRECTOR DE TESIS

Dra. María del Rayo Camacho Corona

FIRMA DEL CO-DIRECTOR DE TESIS

Dra. Elvira Garza-González

ÍNDICE DE CAPÍTULOS

ΓŲLO			Р
APÍTULO 1 II	NTRODUCCIÓN		1
Enferm	edades infecciosas		1
Enferm	edades infecciosas de las vías		
respirat	orias	· · · · · · · · · · · · · · · · · · ·	2
Citotox	icidad	· · · · · · · · · · · · · · · · · · ·	5
.1 Ensayo	con la sal de tetrazolio (WST-1)	· · · · · · · · · · · · · · · · · · ·	7
Microa	rreglos	· · · · · · · · · · · · · · · · · · ·	8
Probler	nática actual	· · · · · · · · · · · · · · · · · · ·	9
La med	licina tradicional	· · · · · · · · · · · · · · · · · · ·	10
5.1 Larrea	tridentata		10
PÍTULO 2 H	IIPÓTESIS Y OBIETIVOS		15
Hinótes	vis		15
Objetiv	o general	•••••••••••••••••••••••••••••••••••••••	15
1 Objetiv	os particulares	••••••	15
.i Objetiv	os particulaies	·····	15
APÍTULO 3 N	IATERIALES Y MÉTODOS		16
Materia	les y Equipos	·····	16
3.1.1	Fitoquímica	•••••••••••••••••••••••••••••••••••••••	16
3.1.2	Ensayos biológicos	•••••••••••••••••••••••••••••••••••••••	15
3.1.3	Mecanismo de Acción	·····	17
Estudio	os de Fitoquímica	·····	17
3.2.1	Material vegetal	·····	17
3.2.2	Obtención del extracto		
	clorofórmico	·····	18
3.2.3	Fraccionamiento del extracto		
	clorofórmico	·····	18
3.2.4	Aislamiento y purificación de los		
	compuestos del extracto		
	clorofórmico	·····	18
3.2.5	Obtención del extracto metanólico	·····	20
3.2.6	Fraccionamiento del		
	extracto metanólico	······	20
3.2.7	Aislamiento y purificación de los		
	compuestos del extracto		
	metanólico	······	20
3.2.8	Caracterización estructural		
	de los compuestos del extracto		
	clorofórmico y metanólico	······	21
Ensayo	s biológicos	······	22
3.3.1	Preparación de las muestras para		
	ensayos biológicos	······	22
3.3.2	Actividad antibactetriana	······	22
3.3.2.1	Cepas bacterianas y preparación		
	del inoculo	······	22
3.3.2.2	Ensayo biológico	······	23
	VIII		
	TULO. III APÍTULO 1 II Enferm respirat Citotox I Ensayo Microa Probler La med I Larrea APÍTULO 2 H Hipótes Objetiv APÍTULO 3 N Materia 3.1.1 3.1.2 3.1.3 Estudio 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 3.2.6 3.2.7 3.2.8 Ensayo 3.3.1 3.3.2.3 3.2.4	 TULO. PÍTULO 1 INTRODUCCIÓN. Enfermedades infecciosas Enfermedades infecciosas de las vías respiratorias Citotoxicidad Ensayo con la sal de tetrazolio (WST-1) Microarreglos Problemática actual La medicina tradicional Larrea tridentata PÍTULO 2 HIPÓTESIS Y OBJETIVOS Hipótesis Objetivos general Objetivos particulares PÍTULO 3 MATERIALES Y MÉTODOS Materiales y Equipos 3.1.1 Fitoquímica 3.1.2 Ensayos biológicos 3.1.3 Mecanismo de Acción Estudios de Fitoquímica 3.2.1 Material vegetal 3.2.2 Obtención del extracto clorofórmico 3.2.3 Fraccionamiento del extracto clorofórmico 3.2.4 Aislamiento y purificación de los compuestos del extracto metanólico 3.2.7 Aislamiento y purificación de los compuestos del extracto metanólico 3.2.7 Aislamiento y purificación de los compuestos del extracto metanólico 3.2.7 Aislamiento y purificación de los compuestos del extracto metanólico 3.2.8 Caracterización estructural de los compuestos del extracto metanólico 3.2.1 Preparación de las muestras para ensayos biológicos 3.3.1 Preparación de las muestras para ensayos biológicos 3.3.2 Actividad antibacteriana 3.3.2.1 Cepas bacterianas y preparación del inoculo 3.2.2 Ensayos biológicos 	TULO INTRODUCCIÓN PÍTULO 1 INTRODUCCIÓN Enfermedades infecciosas Enfermedades infecciosas de las vías respiratorias Citotoxicidad

	3.3.3	Actividad antituberculosa	······	24
	3.3.3.1	Preparación del medio		
		Middlebrook 7H9	······	24
	3.3.3.2	Cepas bacterianas y preparación		
		del inóculo para el ensayo	······	24
	3.3.3.3	Ensayo biológico	······	24
3.3.4	Activida	d Citotóxica	······	26
	3.3.4.1	Cultivo de células de hígado de		
		Chang	······	26
	3.3.4.2	Cosecha de células de hígado de		
		Chang	······································	26
2.4	3.3.4.3	Ensayo biológico	······	27
3.4	Determin	hación del mecanismo de acción		~ -
	del princ	ipio antibacteriano más activo	••••••	27
	3.4.1	Compuesto seleccionado	••••••	27
	3.4.2	Cepa seleccionada	••••••	28
	3.4.3	Curva de Crecimiento de S.aureus		
		RM a concentraciones variables		20
	2.44	del fitocompuesto	•••••••••••••••••••••••••••••••••••••••	28
	3.44	Obtención de concentrados		20
245	F	bacterianos	•••••	28
3.4.5		Du de AKIN total	······	29
	3.4.3.1	Total		20
	2157	Pomoción dol ADN gonómico	······	29
	5.4.5.2	del APN total con ADNasa I		30
	3 1 5 2 1	Análisis de APN total por	•••••••	50
	5.4.5.2.1	electroforesis en el del de		
				30
	34522	Análisis de ARN por	••••••	50
	3.7.3.2.2	espectrofotometría		31
346	Obtenció	on del ARNm	••••••	31
5.1.0	3.4.6.1	Templado de ARN y mezcla de	•••••••	51
	0111011	oligonucleótidos de captura		31
	3.4.6.2	Preparación de las perlas		01
		metálicas	· · · · · · · · · · · · · · · · · · ·	32
	3.4.6.3	Captura de ARNr y recuperación		
		de ARNm enriquecido.	· · · · · · · · · · · · · · · · · · ·	32
	3.4.6.4	Precipitación y resuspención de		
		los ARNms enriquecidos.	· · · · · · · · · · · · · · · · · · ·	33
3.4.7	Obtenció	on de los ADNc marcados con		
	fluorófor	os	·····	33
	3.4.7.1	Retrotranscripción de las		
		muestras del ARNm		34
	3.4.7.2	Acoplamiento del colorante al		
		amino modificado de ADNc	·····	34
	3.4.7.3	Purificación y concentración		
		de los cADNs marcados con los		
		fluoróforos.		35
3.4.8	Microarr	reglos		36

	a 4 a 4			
	3.4.8.1	Preparación de solución de		20
	2107	nibridación dinémica	•••••	30
	3.4.8.2 3.4.8.3	Protocolo de lavado	•••••	30 37
	3.4.0.3. 3.4.8.4	I ectura y cuantificación de	••••••	57
	5.4.0.4	microarreglo		38
	319	Análisis bioinformático	•••••	30
35	Disposició	n de residuos: parte fitoquímica	•••••	57
5.5	ensavos bi	iológicos y mecanismo de acción		39
	ensayes en		•••••	07
CAPÍTU	ULO 4 RES	SULTADOS Y DISCUSIÓN		40
4.1	Fitoquími	са		40
	4.1.1	Elucidación estructural de los		
		compuestos aislados del extracto		
		clorofórmico	· · · · · · · · · · · · · · · · · · ·	40
	4.4.1.1	Elucidación estructural del ácido		
		dihidroguaiarético (Lt4).	······	40
	4.4.1.2	Elucidación estructural de 4-epi-		
		larreatricina (Lt7)	······	46
	4.1.1.3	Elucidación estructural de 3'-		
		demetoxi-6-O-		
		demetilisoguaiacina (Lt8)	······	52
	4.1.1.4	Elucidación estructural de 5,4 ² -		
		d1h1drox1-3,7,8,3 -		C 0
	4115	tetrametoxiflavona (Lt2)	•••••	60
	4.1.1.5	Elucidación estructural de 5,4 -		
		(I + 5)		65
	1116	(LU) Elucidación estructural de	•••••	05
	4.1.1.0	$5 \Lambda'_{-}$ dibidrovi -7_{-} metoviflavona		
		(I t6)		70
	4117	Elucidación estructural de 5.7.4 $^{\prime}$	•••••	70
		trihidroxi-3 8 3'		
		trimetoxiflayona (Lt6a)		76
	4.1.1.8	Elucidación estructural de		
		5,8,4´-trihidroxi-3,7-		
		dimetoxiflavona (Lt3)		79
	4.1.2	Elucidación estructural de los		
		compuestos aislados y		
		purificados del extracto		
		metanólico	······	84
	4.1.2.1	Elucidación estructural de 3-		
		demetoxi-6-0-		
		demetilisoguaiacina (Lt8)	······	84
	4.1.2.2	Elucidación estructural de 5, 4'-		
		dihidroxi-3,6,7-trimetoxiflavona		- ·
		(Lt10)	······	84
	4.1.2.3	Elucidación estructural de 5,7,		
		4 -trihidroxi-3- metoxiflavona		07
		(Lt15)	······	87

4.2	Activida	ad antibacteriana y antituberculosa		
	de los co	ompuestos del extracto		
	clorofór	mico.	·····	92
	4.2.1	Actividad antibacteriana y		
		antituberculosa de los		
		compuestos del extracto		
		metanólico.	· · · · · · · · · · · · · · · · · · ·	96
	4.2.2	Relación estructura química-		
		actividad biológica de los		
		compuestos ensavados		95
4.3	Activida	ad citotóxica de los compuestos		
	obtenido	os de <i>L_tridentata</i>		101
4.4	Resultad	los de la determinación del	••••••	101
	mecanis	mo de acción del principio		
	antibact	eriano más activo		102
	4 4 1	Curva de crecimiento de S	••••••	102
		aureus RM a concentraciones		
		variables del fitocompuesto		102
	442	Extracción del ARN total	•••••••••	102
	443	L'ectura de microarreglos	·····	105
	444	Análisis bioinformático	·····	105
	445	Génes sobreexpresados	•••••	106
	446	Génes reprimidos	······	111
	7.7.0	Genes reprintidos	······	111
CΔΡÍΤ		ONCLUSIONES		116
C/ II 11		onceosiones	•••••	110
CAPÍT	TILO 6 PI	FRSPECTIVAS		118
C/ II 11				110
CAPIT		FFFRENCIAS		119
0/11/1			•••••	117
APÉNI	DICE A D	IFRACCIÓN DE RAYOS X FN		
MONC	CRISTA	L DE 4-EPILARREATRICINA		
(Lt7)				126
(111)			•••••	120
APÉNI	DICE B A	RTÍCULO PUBLICADO		137
			•••••••	107
APÉNI	DICE C R	ESUMEN AUTOBIOGRÁFICO	·····	143

LISTA DE FIGURAS

Figura	Nombre	 Р
1	Estructura química del WST-1	 7
2	Reducción de Resazurina a Resorufina	 25
3	Espectro de RMN ¹ H (400 MHz, CDCl ₃	
	/CD ₃ OD) de ácido dihidroguaiarético (Lt4)	 42
4	Espectro de RMN 13 C (100 MHz, CDCl ₃) de	
	ácido dihidroguaiarético (Lt4)	 43
5	Espectro de HMQC de	
	ácido dihidroguaiarético (Lt4)	 44
6	Espectro de COSY de	
	ácido dihidroguaiarético (Lt4)	 45
7	Espectro de RMN 1 H (400 MHz, CDCl ₃ /	
	CD ₃ OD): 4-epi-Larreatricina (Lt7)	 47
8	Espectro de RMN de 13 C (100 MHz, CDCl ₃):	
	4-epi-Larreatricina (Lt7)	 48
9	Espectro de DEPT 135 Y DEPT 90 de 4-epi-	
	Larreatricina (Lt7)	 49
10	Espectro de COSY de 4-epi-Larreatricina (Lt7)	 50
11	Espectro de HMQC de 4-epi-Larreatricina(Lt7)	 51
12	Espectro de RMN 1 H (400 MHz, CDCl ₃):	
	3'-Demetoxi-6-O-demetilisoguaiacina (Lt8)	 54
13	Espectro de RMN de 13 C (100 MHz ,CDCl ₃):	
	3'-Demetoxi-6-O-demetilisoguaiacina (Lt8)	 55
14	Espectros de DEPT 90 y DEPT 135:	
	3'-Demetoxi-6-O-demetilisoguaiacina (Lt8)	 56
15	Espectro de COSY (400 MHz, CDCl ₃):	
	3'-Demetoxi-6-O-demetilisoguaiacina (Lt8)	 57
16	Espectro de HMQC :	
	3'-Demetoxi-6-O-demetilisoguaiacina(Lt8)	 58
17	Espectro de RMN ¹ H (400 MHz, $CDCl_3$):	
	5,4'-dihidroxi-3,7,8,3'-tetrametoxiflavona (Lt2)	 57
18	Espectro de RMN 13 C (100 MHz, CDCl ₃):	
	5,4'-dihidroxi-3,7,8,3'-tetrametoxiflavona (Lt2)	 61
19	Espectro de COSY :	
	5,4'-dihidroxi-3,7,8,3'-tetrametoxiflavona (Lt2)	 62
20	Espectro de HMQC:	
	5,4'-dihidroxi-3,7,8,3'-trimetoxiflavona(Lt2)	 63
21	Espectro de RMN 'H (400MHz, DMSO-d6)	
	de 5,4'-dihidroxi-3,7,8-trimetoxiflavona (Lt5)	 66
22	Espectro de RMN ¹³ C (100 MHz, DMSO-d6)	
	de 5,4'-dihidroxi-3,7,8-trimetoxiflavona (Lt5)	 67

23	Espectro de COSY de	
	5,4°-dihidroxi-3,7,8-trimetoxiflavona (Lt5)	 68
24	Espectro de HMQC de	
	5,4'-dihidroxi-3,7,8- trimetoxiflavona (Lt5)	 69
25	Espectro de RMN ¹ H (400 MHz, DMSO-d6) de	
	5,4'-dihidroxi-7-metoxiflavona (Lt6)	 71
26	Espectro de RMN de ¹³ C (100 MHz, DMSO-	 72
	d6) de 5,4'-dihidroxi-7-metoxiflavona (Lt6)	
27	Espectro de RMN de DEPT 90 de 5,4'-	
	dihidroxi-7-metoxiflavona (Lt6)	 73
28	Espectro de COSY de	
	5,4'-dihidroxi-7-metoxiflavona (Lt6)	 74
29	Espectro de HMQC de	
	5,4'-dihidroxi-7-metoxiflavona (Lt6)	 75
30	Espectro de RMN 1 H (400 MHz, CDCl ₃) de	
	5,7, 4'-trihidroxi-3,8,3'-trimetoxiflavona (Lt6a)	 77
31	Espectro de RMN 13 C (100 MHz, CDCl ₃) de	
	5,7,4'-trihidroxi-3,8,3'-trimetoxiflavona (Lt6a)	 78
32	Espectro de RMN ¹ H (400 MHz, DMSO-d6) de	
	5,8, 4'-trihidroxi-3,7-dimetoxiflavona (Lt3)	 80
33	Espectro de RMN ¹³ C (100 MHz, DMSO-d6)	
	de 5,8, 4'-trihidroxi-3,7-dimetoxiflavona (Lt3)	 81
34	Espectro HMQC de 5,8, 4'-trihidroxi-3,7-	
	dimetoxiflavona (Lt3)	 82
35	Espectro de RMN 1 H (200 MHz, CD ₃ COCD ₃)	
	de 5, 4'-dihidroxi-3,6,7-trimetoxiflavona (Lt10)	 85
36	Espectro de RMN ¹³ C (50 MHz, CD ₃ COCD3)	
	de 5, 4'-dihidroxi-3,6,7-trimetoxiflavona (Lt10)	 86
37	Espectro de RMN ¹ H (200 MHz, CD ₃ COCD ₃)	
	de 5,7, 4'-trihidroxi-3-metoxiflavona (Lt15)	 88
38	Espectro de RMN 13 C (50 MHz, CD ₃ COCD ₃)	
	de 5,7, 4'-trihidroxi-3-metoxiflavona (Lt15)	 89
39	Espectro de HMQC (CD_3COCD_3) de 5,7, 4'-	
	trihidroxi-3-metoxiflavona (Lt15)	 90
40	Estructura química de compuestos obtenidos	
	del extracto clorofórmico	 92
41	Estructura química de compuestos obtenidos	
	del extracto metanólico	 97
42	Curvade crecimiento de S. aureus RM a	
10	concentraciones variables del fitocompuesto	 102
43	Electroforesis en gel de agarosa (A) Condición co	101
	tratamiento, (B) condición sin tratamiento.	 104
44	Imágenes del microarreglo (A) Cy3 (puntos	
	rojos): condición sin tratamiento; (B)	
	Cy5(puntos verdes): (C) Cy3/Cy5 (puntos	107
15	rojor, verdes y amarillos): ambas condiciones.	 105
43	\angle score del microarregio. (A) \angle score con todos	100
	IOS genes; (B)ZSCORE +/- 1.5 DS	 106

LISTA DE TABLAS

Tabla	Nombre	P 2
Tabla I	Argunos ejempios de farmacos antibacterianos	 3
Tabla 2	Fármacos antituberculosos de primera línea	 4
Tabla 3	Fármacos antituberculosos de segunda línea	 5
Tabla 4	Estudios farmacológicos de extractos de <i>L</i> . <i>tridentata</i>	 12
Tabla 5	Estudios químicos y farmacológicos de <i>L. tridentata</i>	 13
Tabla 6	Constantes espectroscópicas de los lignanos obtenidos del extracto clorofórmico	 59
Tabla 7	Constantes espectroscópicas de los flavonoides obtenidos del extracto clorofórmico Constantes espectrocópicas de los	 83
Tabla 9	flavonoides obtenidos del extracto metanólico Actividad antibacteriana y antituberculosa de	 91
Tabla 10	los compuestos del extracto clorofórmico de <i>L. tridentata</i> Actividad antibacteriana del compuesto 3-	 93
Tabla 11	demetox1-6-O-demetilisoguaiacina en contra de aislados clínicos Actividad antibacteriana y antituberculosa de	 95
Table 12	los compuestos del extracto metanólico	 98
1 auta 12	algunos compuestos obtenidos de <i>Larrea tridentata</i> con células Chang	 101
Tabla 13	Génes sobreexpresados	 107
Tabla 14	Génes reprimidos	 112

LISTA DE ABREVIATURAS

Ac	Aislados clínicos
ID	Una Dimensión
2D	Dos dimensiones
	Ácido Desovirribonucleico
ADNo	Ácido Desovirribonucleico Complementario
	American Type Culture Collection
CI	American Type Culture Conection
CI C	
CMI	Cancontración Mínima Inhibitaria
	Concentración Minima minioriona
	Cloucharma
CD COCD	
CD_3COCD_3	Acetona deuterada
	Correlation Spectroscop Y
CO_2	Dioxido de carbono
	Grados Centigrados
CDCl ₃	Cloroformo deuterado
CD_3OD_3	Metanol deuterado
Cy3	Cyanine 3
Cy5	Cyanine 5
D	Doblete
DD	Doble de doble
DEPT 90	Distortionless Enhancement by Polarization Transfer
DEPT 135	Distortionless Enhancement by Polarization Transfer
DMSO	Dimetil sulfóxido
DMSO-d6	Dimetilsulfóxido deuterado
DEPC	Dietil pirocarbonato
DO	Densidad óptica
dTTP	Desoxitimidina trifosfato
ELISA	Ensayo inmunoenzimático ligado a enzimas.
EDTA	Ácido etilendiaminotetraacético
FE	Fase estacionaria
FM	Fase móvil
TAE	Tris-acetato de sodio-EDTA
HEPES	Ácido [N-(2-hidroxietil)piperazina-N'-2-etano-sulfónico]
HMQC	Heteronuclear Multiple Quantum Coherence
Hz	Hertz
Н	Hidrógeno
HMBC	Heteronuclear Multiple Bond Correlation
Н	Hora
Iso	Isoniacida
J	Joules
Lf	Levofloxacina
MTT	3-(4,5 dimetil-2-tiazol)-difeniltetrazólico
NOESY	Nuclear Overhauser Effect SpectroscopY
μg	Microgramos
ML	Mililitros

MeOH	Metanol
MEM	Medio esencial mínimo
MRSA	Methicillin-resistant Staphylococcus aureus.
MHz	Megahertz
М	Molar
Me	Metoxilo
М	Multiplete
Nm	Nanómetos
MM	MiliMorlar
μm	Micrómetro
NaCl	Ácido clorhídrico
NaH ₂ PO ₄	Fosfato de sodio
OMS	Organización Mundial de la Salud
OMe	Metoxilo
OADC	Ácido oleico, albúmina, dextrosa y catalasa
OH	Hidroxilo
Ppm	Partes por millón
NaOH	Hidróxido de Sodio
Р	Páginas
PBS	Solución buffer de fosfatos
RT-PCR	Reacción en cadena de la polimerasa en tiempo real
RNA	Ácido ribonucleico
RNAm	Ácido ribonucleico mensajero
RNAr	Ácido ribonucleico ribosomal
$RMN^{1}H$	Resonancia Magnética Nuclear de Protón
RMN ¹³ C	Resonancia Magnética Nuclear de Carbono
Rpm	Revoluciones por minuto
SBF	Suero fetal bovino
SSPE	Sal-sodio-fosfato- ácido etilendiaminotetraacético
S	Singulete
TSM	Tetrametil silano
UFC	Unidad formadora de colonia
dUTP	Desoxiuridiltrifosfato
VIH	Virus de la Inmunodeficiencia Humana
WST-1	(4-[3-(4-Iodofenil)-2-(4-nitrofenil)-2H-5-tetrazolio]-1,3-disulfonato de
	benzeno)

CAPÍTULO 1 INTRODUCCIÓN

1.1 Enfermedades infecciosas

El mundo actual, sumamente móvil, interdependiente e interconectado, ofrece innumerables oportunidades para la rápida diseminación de enfermedades infecciosas. La Organización Mundial de la Salud reporta que las enfermedades infecciosas, son las causantes del 25% de la mortalidad mundial, ocasionando alrededor de 17 millones de decesos al año y disminuyendo la calidad de vida de miles de personas (OMS 2002-2005; Olshansky J et al., 1997).

En el mercado farmacéutico, existe tratamiento adecuado para erradicar algunas infecciones de mayor incidencia a nivel mundial, pero la falta de medios económicos para atacar estas infecciones provoca su rápida diseminación. Es por esto que la mayoría de las muertes provocadas por enfermedades infecciosas, ocurren en países industrialmente subdesarrollados y en áreas tropicales; pues la poca infraestructura en salud de estos países, la pobreza, negligencia y las condiciones insalubres crean un ambiente propio para el desarrollo de estas enfermedades (OMS 2002-2005).

Las enfermedades infecciosas se pueden clasificar según el agente transmisible y/o patógeno que la causa. Por ejemplo, infecciones causadas por bacterias, hongos, parásitos, virus o priones (proteínas) (Nelson K et al., 2000).

Otra forma de clasificar a las enfermedades infecciosas, es de acuerdo a su comportamiento dentro del huésped. Cualquier enfermedad infecciosa que se disemina de un huésped a otro, de forma directa o indirecta, se denomina enfermedad transmisible. Las enfermedades transmisibles contagiosas son enfermedades que se diseminan con facilidad de una a otra persona (Nelson K., 2000). Además las enfermedades infecciosas, también se clasifican de acuerdo al órgano, sistema o el sitio

en el que se observan manifestaciones clínicas relacionadas a la infección (Nelson K., et al 2000). Entre las cuales se encuentran las infecciones de vías respiratorias altas e infecciones en vías respiratorias bajas, gastrointestinales, renales e infecciones dermatológicas.

1.2 Enfermedades infecciosas de las vías respiratorias

Actualmente una de las principales amenazas para la salud pública mundial es la prevalencia de las enfermedades infecciosas de las vías respiratorias causada por bacterias resistentes a los fármacos, la cual se intensifica en los hospitales denominadas comúnmente enfermedades nosocomiales.

La Secretaria de Salud reportó en el 2011 que hasta el 12 de junio del 2010, en todo el país se habían registrado 12, 238, 438 casos de infecciones respiratorias agudas. De todos los casos 5,379,740 se presentaron en el sexo masculino (44%) y 6,858,698 en el femenino (56%). El grupo de edad más afectado fue el de los menores de un año (incidencia de 64,589.7 por 100 mil habitantes), y enseguida el de niños de 1 a 4 años de edad (incidencia de 36,228.4 por 100 mil habitantes).

Las bacterias que causan mayor número de infecciones en las vías respiratorias en hospitales son: *Streptococcus pneumoniae*, *Klebsiella pneumoniae*, *Staphylococcus aureus*, *Haemophilus influenzae*, *Pseudomonas aeruginosa*, *Acinetobacter baumannii*, *Stenotrophomonas maltophilia*, *Escherichia coli* y *Enterobacter cloacae*. Las infecciones con estas bacterias complican las condiciones clínicas del paciente y están asociadas con una alta morbilidad y mortalidad (Del Toro et al., 2006; Kuo et al., 2007; Grupper., et al 2007). Adicionalmente, estas bacterias están asociadas con otras infecciones nosocomiales, particularmente en pacientes inmunosuprimidos y con fibrosis quística (Obristsch et al., 2005; Driscollo et al 2007). *S. aureus* resistente a meticilina (RM) es de particular interés en los Estados Unidos, donde aproximadamente el 60% de infecciones con estafilococos en hospitales son causadas por *S. aureus* RM y esta proporción continua aumentando (Ferrara et al., 2007). *S. pneumoniae* resistente a penicilina y enterococos resistentes a vancomicina son una causa adicional de preocupación en los tratamientos de los pacientes (Berger-Bachi et al., 2002). Para combatir a los agentes infecciosos anteriores causantes de las infecciones en las vías respiratorias contamos con una gran gama de antibióticos. En la tabla 1 podemos observar algunos de estos fármacos de acuerdo a su clase y mecanismo de acción (Brunton et al., 2007).

TABLA 1.

Clase	Mecanismo de acción	Fármacos	
Antimetabolitos:	Inhiben la incorporación del ácido para-	Sulfanilamida, sulfadiazina,	
Sulfonamidas y	amino benzóico (PABA) en el ácido fólico	sulfametoxazol, sulfisoxazol,	
Trimetoprim	y el trimetoprim evita la reducción del	sulfacetamida	
(diaminopirimidina)	dihidrofolato en tetrahidrofolato		
Quinolonas	Inhiben el superenrollamiento de DNA	Ácido nalidíxico, cinoxacina,	
	mediado por la girasa	norfloxacina, ofloxacina,	
		esparfloxacina	
Beta lactámicos	Inhiben la síntesis de la pared celular	Penicilinas G y V, metilicina,	
	bacteriana	oxacilina, nafcilina, ampicilina,	
		amoxicilina, carbenicilina, ticarcilina,	
		piperacilina, mezlocilina	
Cefalosporinas	Inhiben la síntesis de la pared celular	1ª generación: cefalexina, cefalotina;	
	bacteriana	2ª generación: cefuroxima, cefoxitina,	
		cefaclor; 3ª generación: cefotaxima,	
		ceftriaxona, ceftazidima.	
Carbapénicos	Se unen a proteínas ligadoras de penicilina,	Imipenem, meropenem	
	entorpece la síntesis de la pared bacteriana.		
Inhibidores de la	Se ligan a las β -lactamasas, las inactivan y	Acido clavulánico/Amoxicilina, ácido	
betalactamasa	así evitan la destrucción de los antibióticos	clavulanico/ticarcilina.	
	β-lactámicos que sirven de sustratos para		
	dichas enzimas.		
Aminoglucósidos	Se unen a la subunidad ribosómica 30S e	Gentamicina, amikacina, tobramicina,	
	interfiere en el comienzo de la síntesis	netilmicina, estreptomicina,	
	protéica. El aminoglucósido que se liga a la	neomicina, kanamicina.	
	subunidad 30S también ocasiona lectura		
	errónea de mRNA, lo cual produce una		
	proteína sintetizada en forma incompleta o		
	incorporación de aminoácidos incorrectos		
	que culmina en la producción de proteínas		
	anormales o no funcionales.		
Tetraciclinas	Inhiben la síntesis de proteína de la bacteria	Clortetraciclina, oxitetraciclina,	
	al ligarse al ribosoma bacteriano 30 S y	demeclociclina, metacilina	
	evitan la llegada del aminoacil tRNA al	doxiciclina, minociclina.	
	sitio aceptor en el complejo mRNA-		
	ribosomal		
Macrólidos	Inhiben la síntesis de proteína al ligarse	Eritromicina, claritromicina y	
	reversiblemente a subunidad ribosómica50S	azitromicina.	
Glucopéptidos	Inhiben la síntesis de la pared celular.	Vancomicina, teicoplanima.	
Estreptogramina	Inhibe la síntesis de proteínas al combinarse	Quinopristina/ Dalfopristina.	
	irreversiblemente al ribosoma 50S		
Oxazolidinona	Inhibe la síntesis de proteínas al unirse al	Linezolid.	
	sitio P de la unidad ribosómica 50S.		

ALGUNOS EJEMPLOS DE FÁRMACOS ANTIBACTERIANOS

Por otro lado, *Mycobacterium tuberculosis*, el agente causal de la tuberculosis afecta a cerca de un tercio de la población mundial. La OMS reportó en el 2011, que en el año 2010 a nivel mundial hubo un estimado de 8.8 millones de casos nuevos de tuberculosis, 1.1 millones de defunciones por esta infección en personas seronegativas para el VIH y adicionalmente 350,000 muertes por tuberculosis asociada con infección por el VIH (OMS 2011). Por consiguiente dando un total de 1.4 millones de personas muertas por tuberculosis en el 2010. Para combatir la tuberculosis se cuenta con fármacos especializados, los cuales se clasifican en 2 grupos en función de su eficacia, potencia y efectos secundarios: fármacos de primera línea que se presentan en la tabla 2: isoniazida, rifampicina, pirazinamida, etambutol, estreptomicina, los cuales combinan el máximo nivel de eficacia con un grado aceptable de toxicidad, y fármacos de segunda línea que se presentan en la tabla 3: kanamicina, capreomicina, tioamidas pirazinamida, ofloxacina, cicloserina, ácido aminosalicílico, entre otros, que se utilizan en los casos de tuberculosis resistentes (Harman et al., 2001; Brunton et al., 2007)

TABLA 2

Fármaco	Mecanismo de Acción	
Rifampicina	Inhibe a la RNA polimerasa dependiente de DNA de la micobacteria	
	para formar un complejo enzima-fármaco estable que suprime el	
	comienzo de la formación en cadena en la síntesis de RNA. Acción	
	bactericida	
Etambutol	Su mecanismo de acción y resistencia se desconoce, pero se ha	
	demostrado que bloquea la incorporación del ácido micólico en la	
	pared de la micobacteria. Bacteriostático	
Estreptomicina	a Inhibe la síntesis de proteínas, ya que altera la función de los	
	ribosomas. Acción bactericida	
Isoniacida	Inhibe la síntesis de ácidos micólicos de la pared celular a través de	
	vías dependientes de oxígeno. Acción bactericida.	
Pirazinamida	El mecanismo de acción de este fármaco se desconoce. Acción	
	bactericida a pH ácido	

FÁRMACOS ANTITUBERCULOSOS DE PRIMERA LÍNEA

TABLA 3

Fármaco	Mecanismo de acción	
Etionamida	No ha sido descrito con exactitud su mecanismo, pero se ha comprobado que inhibe la síntesis de péptidos. Acción bactericida	
Ácido aminosalicílico	Su mecanismo es semejante al de las sulfonamidas. Acción bacteriostática	
Cicloserina	Inhibe la síntesis de pared celular en cepas de <i>M. tuberculosis</i> . Acción bactericida	
Kanamicina	Interfiere en la síntesis de proteínas bacterianas al unirse a la subunidad 30S de los ribosomas. Acción bactericida	
Amikacina	Interfiere en la síntesis de proteínas bacterianas al unirse a la subunidad 30S de los ribosomas. Acción bactericida	
Capreomicina	Interfiere en la síntesis de proteínas bacterianas al unirse a la subunidad 30S de los ribosomas. Acción bactericida	
Ciprofloxacina	Inhibe la topoisomerasa bacteriana IV y la DNA girasa, enzimas que son requeridas para la transcripción, reparación y recombinación. Acción bactericida	
Ofloxacina	Inhibe la topoisomerasa bacteriana IV y la DNA girasa, enzimas que son requeridas para la transcripción, reparación y recombinación. Acción bactericida	

FÁRMACOS ANTITUBERCULOSOS DE SEGUNDA LÍNEA

Cabe mencionar que se ha reportado en la literatura que la mayoría de los antibióticos causan hepatotoxicidad, nefrotoxicidad y ototoxicidad (Brunton et al., 2007). Por lo que también es importante en la búsqueda de nuevos agentes antibacterianos hacer una evaluación exhaustiva con respecto a la citotoxicidad en líneas celulares variadas.

1.3 Citotoxicidad

La proliferación celular es controlada por factores de crecimiento ubicados en la membrana celular, los cuales mediante la activación de cascadas enzimáticas realizan diversas funciones como la producción de proteínas, división celular, entre otras, todas relacionadas en el desarrollo y viabilidad celular. La alteración en alguno de los factores de regulación da lugar a una proliferación celular anormal e incluso su muerte, conllevando a un gran número de patologías humanas. (Cayman chemical company 2007). Los ensayos de proliferación celular, conocidos también como ensayos de

citotoxicidad se utilizan ampliamente para evaluar algunos factores regulatorios que se mencionaron anteriormente.

La citotoxicidad celular se define como una alteración de las funciones celulares básicas, lo que provoca finalmente un daño que puede ser detectado a partir de diferentes pruebas *in vitro*. Finalmente, cabe mencionar que para predecir efectos tóxicos de diferentes tipos de compuestos químicos: naturales o sintéticos se utilizan modelos experimentales como líneas celulares, cultivos primarios y cultivo de órganos aislados.

Los ensayos para determinar la citotoxicidad son capaces de detectar mediante diferentes mecanismos celulares conocidos, los efectos adversos que interfieren con estructura y/o propiedades esenciales para la supervivencia celular, proliferación y/o funciones. Dentro de estos se encuentran la integridad de la membrana y del cito-esqueleto, metabolismo, síntesis y degradación, liberación de constituyentes celulares o productos, regulación iónica y división celular (Arrebola et al., 2003). Entre los métodos para cuantificar la citotoxicidad de un compuesto se ubican: los que miden actividad metabólica celular y los que se basan en el principio de exclusión celular. En estos últimos se exponen las células a sustancias capaces de atravesar la membrana plasmática y teñirlas, posteriormente en el conteo celular se distinguen las células vivas de aquellas que no lo están porque las primeras tienen la capacidad de excluir el colorante activamente de sus citoplasmas. Dos de los reactivos más utilizados son Violeta de Genciana y el Azul de Tripano (Torres et al., 2003).

Para ejemplificar los métodos que miden actividad metabólica celular se encuentran ensayos conocidos ya validados como el ensayo de captación de rojo neutro, enlazamiento al azul de kenacid, el ensayo de reducción de bromuro de 3-(4,5 dimetil-2-tiazol)-difeniltetrazólico (MTT) y la prueba con la sal de tetrazolio (4-[3-(4-Iodofenil)-2-(4-nitrofenil)-2H-5-tetrazolio]-1,3-disulfonato de benceno) (WST-1); estos dos últimas pruebas tiene en común la actividad mitocondrial como parte de su fundamento (Cayman Chemical Company, 2007; Torres et al., 2003).

1.3.1 Ensayo con la sal de tetrazolio (WST-1)

El nombre del reactivo WST-1 es (4-[3-(4-Iodofenil)-2-(4-nitrofenil)-2H-5tetrazolio]-1,3-disulfonato de benceno, su estructura se muestra en la figura 1.

Figura 1. Estructura química del WST-1

La prueba de WST-1 se fundamenta en la transformación de WST en formazán mediante un complejo sistema mitocondrial-succinato-tetrazolio-reductasa el cual solo esta activo en células vivas, pues en las células muertas la mitocondria ya no realiza funciones. Por lo tanto, la cantidad de formazán producida durante el ensayo, se mide mediante la lectura de absorbancia en un espectrofotómetro a una longitud de onda de 450 nm y la cual está directamente relacionada con el número de células viables (Cayman Chemical Company 2007; Torres et al., 2003).

La investigación *in vitro* de cualquier actividad biológica de un compuesto requiere antes conocer el nivel de toxicidad en células, de este modo conociendo la máxima concentración del compuesto que no altera factores que intervienen en la proliferación celular, es posible implementar cualquier otro ensayo que requiera el uso de dicho compuesto, pues se sabrá que la citotoxicidad no intervendrá en los resultados de estudios posteriores. La más alta concentración que no altera la morfología o metabolismo celular es una medida de la actividad citotóxica y se le denomina máxima concentración

no citotóxica; sin embargo, en la mayoría de los casos se utiliza la concentración inhibitoria citotóxica 50% ($CI_{50\%}$) definida como la concentración del compuesto que mata la mitad de las células respecto a un control sin compuesto (Cayman Chemical Company 2007; Torres et al., 2003).

Otro aspecto importante en la búsqueda de nuevos agentes antibacterianos es tratar de proponer nuevos mecanismos de acción o diferentes blancos celulares y compararlos con los fármacos que son ineficaces ante las bacterias resistentes.

1.4 Microarreglos

Entender las funciones de los genes es un gran desafío. Estrategias como la proteómica, transcriptómica, y la metabolómica se aplican para asignar la función de los genes en las redes moleculares. El perfil de expresión de genes de una célula determina su fenotipo, función y respuesta al medio ambiente. El complemento de los genes expresados por una célula es muy dinámico y responde rápidamente a estímulos externos. Por lo tanto, el análisis de la expresión génica es necesario para proporcionar pistas sobre los mecanismos de regulación, las vías bioquímicas y en su función celular. Estrategias convencionales para la expresión de perfiles como northern blot, northern blot reversa, RT-PCR, ELISA, western blot, hidridación *in situ* e inmunohistoquímica están optimizadas para el análisis de un solo gen (Chavan et al., 2006). La técnica de Microarreglos de ADN se desarrolló en respuesta a la necesidad de un alto rendimiento, eficiencia y amplia estrategia para medir la expresión simultáneamente de todos los genes del genoma de un organismo.

Un microarreglo de ADN es una superficie sólida a la cual se unen una serie de secuencias de ADN de genes conocidos. Esta tecnología se basa en la hibridización de las moléculas de ADN o ARN. Los componentes de microarreglos comprenden oligonucleótidos, ADN copia (ADNc) o pequeños fragmentos de PCR, que corresponden con ARN mensajero (ARNm) y que se hibrida al ADNc de dos condiciones diferentes que son marcados con dos fluoróforos diferentes. Las condiciones son mezcladas e hibridadas en el mismo microarreglo. Una vez realizado este primer

paso se procede al escaneo del resultado y a la visualización del mismo. De esta forma se pueden observar genes que se activan o se reprimen en distintas condiciones. Una vez finalizado el análisis de microarreglo, se tiene una gran lista de genes de interés que posteriormente deben ser analizados empleando la bioinformática, para poder concluir acerca del papel de estos con respecto al modelo de estudio para proponer un mecanismo de acción. (Alan W.-C.Liew et al 2005).

1.5 Problemática actual

El uso excesivo e indebido de los antibióticos ha ocasionado que muchos microorganismos hayan adquirido resistencia a los agentes antimicrobianos. Los factores que han contribuido a ello son: uso inapropiado e incontrolado de los antibióticos, la receta excesiva y empírica, la administración de dosis subóptimas, la poca duración del tratamiento y el diagnóstico equivocado que conduce a la selección inapropiada de medicamentos (OMS 2003).

Las bacterias resistentes pueden causar mayor morbilidad y muerte, particularmente de pacientes con enfermedades subyacentes graves o con inmunodeficiencia (Murray et al., 2006). Esta situación se presenta con gran incidencia en los hospitales (Sostarich et al., 2008) porque la transmisión de bacterias se intensifica por causa de la alta vulnerabilidad de la población (Garcia-Alvarado et al., 2002).

Ante la presente problemática, surge la necesidad de buscar alternativas para obtener nuevos fármacos contra bacterias resistentes así como también determinar el mecanismo de acción, con el fin de brindar un mejor tratamiento y terapia; por lo que recurrimos a la medicina tradicional. En nuestro caso aislar y caracterizar moléculas de plantas que sirvan de base para la síntesis de nuevos fármacos

1.6 La medicina tradicional.

Las plantas sintetizan compuestos que han sido y son una fuente invaluable de nuevos fármacos. Aproximadamente el 80% de la población mundial usa medicina tradicional para el tratamiento de sus enfermedades, por consiguiente las plantas y sus constituyentes deben ser estudiados para obtener nuevos fármacos para el tratamiento de infecciones producidas por bacterias resistentes (Nascimiento –Gislene et al., 2000). En México, algunas plantas son usadas en la medicina tradicional para el tratamiento de enfermedades de las vías respiratorias como la tos, bronquitis, tuberculosis y otras infecciones (Argueta., et al 1994; Martinez., et al 1989; Gónzales-Ferrara et al., 1989). El conocimiento médico derivado de la medicina tradicional ha motivado a la investigación de nuevas moléculas bioactivas obtenidas de plantas que muestren una actividad potente en contra de bacterias patógenas y fármaco-resistentes (Giamerellow et al., 2006). Sin embargo, muchos de estos estudios carecen de profundidad en términos de su evaluación biológica, y en la mayoría de los casos hay poca evaluación de la citotoxicidad en diferentes tipos de líneas celulares y determinación del mecanismo de acción (O'Donnell et al 2009).

1.6.1 Larrea tridentata

L. tridentata (Sesse and Moc. Ex DC) Coville es un miembro de la familia Zygophyllaceae, es un arbusto ramificado que abunda en áreas desérticas de México por ejemplo en los estados de San Luís Potosí, Coahuila, Chihuahua, Durango, Sonora, Zacatecas y Baja California. En el sureste de los Estados Unidos de América L. tridentata se encuentra en Arizona, California, Nevada, Texas y Nuevo México (Ross., 2005; Rzedowsky et al., 1994). En la medicina tradicional mexicana L. tridentata se emplea como cicatrizante, antibiótico, hipocolesterolémico, antimalárico. antiinflamatorio, contra cálculos renales, y biliares, cólicos, cáncer del tracto digestivo, úlceras gástricas y abortivo (Ruiz-Martínez et al., 2011). En la medicina tradicional, en los Estados Unidos, la planta se emplea para la varicela, llagas en la piel, diabetes, cáncer, enfermedades venéreas, tuberculosis, resfriado, reumatismo, cálculos renales y biliares (Lu et al., 2010). Otros investigadores han encontrado que varios extractos preparados de *L. tridentata* poseen actividad antihelmíntica (Zamora et al., 1985), antiamibiana (Segura et al., 1978), antitumoral (Abbott et al., 1966), antiviral (Gnabre et al 1995;1996), citotóxica (Luo et al., 1988), hepatotóxica (Lambert et al., 2002; 2005), insecticida (Jacobson et al., 1958), hipocolesterolémico (Arteaga et al., 2005), fitotóxica (Bennett et al., 1953), antiséptica, desinfectante (Saldivar et al., 2007), tumoricida (Mazzio et al 2009), antifúngica (Ruiz-Martinez et al., 2011), y también inhibe la replicación y transcripción del virus de la inmunodeficiencia humana (Garcia et al., 2010). En la tabla 4 se muestran los estudios realizados a *L. tridentata* a nivel extracto.

De los extractos activos se ha logrado aislar como principal componente bioactivo el lignano ácido nordihidroguaiarético como el responsable de la actividad antitumoral, citotóxica, hipocolesterolémico, antioxidante, antidiabético, antiviral, y hepatotóxica atribuida a la planta. Sin embargo, de *L. tridentata* se han aislado y caracterizado otros compuestos como lignanos, flavonoides, terpenos, una quinona y compuestos volátiles. Adicionalmente, se han determinado la actividad biológica y citotóxica de algunos de estos compuestos (tabla 5).

TABLA 4

ESTUDIOS FARMACOLÓGICOS DE EXTRACTOS DE L. TRIDENTATA

Extracto	Actividad biológica	Referencia
Extracto etanólico de las hojas	Estimula la fosfato alcalina	Katz et al., 1990
	y esto provoca daño	
	hepático	
Extractos acuosos y de éter de petróleo de	Antihelmintica	Zamora et al., 1985
la oleoresina seca		
Resina y acido nordihidroguaiaretico	Antiamibiano	Segura et al., 1978
Extracto de cloruro de metileno	Antibacteriana	Navarro et al., 1996
Extracto etanólico	Antibacteriana	Verastegui et al., 1996
Extracto metanólico	Antibacteriana	Dentali et al., 1992
Extracto metanólico y etanólico	Antifúngico	Tequida-Meneses et al.,
Extracto etanólico	Antifúngico	2002
		Verastegui et al., 1996
Extracto acuoso de raíces secas	Antitumoral	Abbott et al., 1966
Extracto cloroformo/metanol de las hojas	Antiviral	Gnabre et al., 1995
secas		
Extracto etanólico de las hojas	Antiviral	Gnabre et al., 1996
Extracto acuoso de la raíz seca	Citotoxico	Luo et al., 1988
		Abbott et al., 1966
Resina	Detoxificante	Mangione et al., 2001
Extracto metanólico	Antilevadura	Navarro et al., 1996
Extracto cloroformo/metanol	Inhibición de expresión de	Gnabre et al., 1996
	genes	, ,
Hojas	Hepatotóxica	Smith et al., 1993
	*	Katz et al., 1990
		Gordon et al., 1995
		Anon 1993
		Sheik et al., 1997
		Koff, 1995
		Clark et al., 1992
		Heosn et al., 2001
		Lambert et al., 2002
Extracto acuoso de las hojas secas	Insecticida	Jacobson, 1958
Extracto hidroalcohólico de las hojas	Anticolelitiasis	Granados et al., 1994
Extracto etanólico y acuoso de las hojas y	Hipocolesterolémico	Arteaga et al., 2005
ramas		
Extracto acuoso de las partes aéreas	Inhibe el crecimiento de	Bennett et al., 1953
	plantas	
Extracto clorofórmico de las partes aéreas	Antimicobacteriana	Camacho-Corona et al.,
		2008
Extracto clorofórmico y metanólico de las	Antibacteriana	Bocanegra-Garcia et al.,
hojas		2009.
Extracto etanólico de hojas	Anti VIH	Garcia et al., 2010
Extracto acuoso de hojas	Antifúngico	Ruiz-Martínez et al., 2011

TABLA 5

Compuestos	Actividad biológica	Referencia
Naftoquinona:	Citotóxico: línea P-388	Luo et al., 1988
Larreantina	(leucemia murina)	
Lignanos		
Acido nordihidroguaiaretico	Antihipertrigliceridémico;	Gonzalez et al., 2002
	Anticancerígeno;	Arteaga et al., 2005
	Hipocolesterolémico	Abou-Gazar et al., 2004
4-Epi-larreatricina	No determinada	
3'-Demetoxi-6-O-demetilisoguaiacina	Abortivo	Konno et al., 1989
Lignanos glicosidados: Larrealignanos A,	No citotóxico a 20µM en	Yokosuka et al., 2011
larrealignanos B	HL-60	
Flavonoides		
Genkwanina	Antiinflamatorio	Sakakibara et al., 1975
Ternatina	Antiinflamatorio	Sakakibara et al., 1977
Rhamnocitrin	Antimicrobiano	Bernhard et al., 1981
Compuestos volátiles		
1-Cloro-2-metoxi-benzeno	No determinada	Bohnstedt et al., 1979
Isobutironitrilo		Jardine et al., 2010
Benzaldehido		
Terpenos		
3β-(3,4-dihidroxicinamoil)-eritrodiol	Citotóxico	Xue et al., 1988
3β-(4-hidroxicinamoil)-eritrodiol		Smati et al., 2004
Eritrodiol		
Tritrerpenos glicosidados:	Citotoxicidad moderada	Jitsuno etl al., 2010
Guaiacin B, nudicaucin C.	HL-60	

ESTUDIOS QUÍMICOS Y FARMACOLÓGICOS DE L. TRIDENTATA

En la literatura encontramos que Verástegui y colaboradores (Verástegui et al., 1996) reportaron que el extracto etanólico de *L. tridentata* tenia actividad en contra de *Clostridium perfringes, Shigella dysenteriae, Yersinia enterocolitica, Proteus vulgaris, Nocardia asteroides*, y *N. brasiliensis* (Concentración Mínima Inhibitoria (CMI) = 10 a 19 μ g/ml). Navarro y colaboradores (Navarro et al., 1996) encontraron que el extracto de cloruro de metileno de las partes aéreas no tenia actividad sobre *Escherichia coli* y *Pseudomonas aureginosa,* y que el mismo extracto era activo en contra de *Bacillus subtilis* (Dentali et al., 1992). En otro estudio se encontró que el extracto clorofórmico de *L. tridentata* fue activo (CMI = 100 a 200 μ g/ml) en contra de *M. tuberculosis* (Camacho-Corona et al 2008). También se encontró que los extractos etanólico y de diclorometano de las hojas de *L. tridentata* fueron activos en contra de una serie de hongos (Vargas-Arispuro et al., 2005; 2009).

Nuestro grupo de investigación seleccionó nueve plantas que se emplean en la República Mexicana para el tratamiento de enfermedades respiratorias. Se preparó el extracto hexánico, clorofórmico, metanólico y acuoso de cada una de ellas dando un total de 36 extractos, los cuales se evaluaron en contra de una serie de bacterias sensibles y resistentes a antibióticos y que infectan el tracto respiratorio. De los 36 extractos evaluados únicamente los extractos clorofórmico y metanólico de L. tridentata mostraron actividad en contra de Staphylococcus aureus RM (CMI = 250 µg/ml), B. subtitlis (CMI = 62.25 µg/ml y 125 µg/ml, respectivamente) y Listeria monocytogenes (CMI = 125 µg/ml). El extracto metanólico de L. tridentata también fue activo en contra de S. aureus, Streptococcus pneumoniae y Stenotrophonas maltophilia (CMI = 250 µg/ml), Enterococcus faecalis y Haemophilus influenzae (CMI = $125 \mu g/ml$). El extracto clorofórmico de L. tridentata fue activo en contra de Acinetobacter baumanii (CMI = 125 µg/ml). Los extractos clorofórmico y metanólico de L. tridentata fueron activos en contra de aislados clínicos de S. aureus (n=25, CMI₉₀ = 31.25 y 62.5 μ g/ml, respectivamente) y *E. faecalis* (n=15, CMI₅₀ = 250 μ g/ml) (Bocanegra-Garcia et al., 2009). Por otro lado, el extracto clorofórmico de L. tridentata fue activo en contra de una cepa sensible (CMI 200 µg/mL) y cuatro cepas monoresistentes de *M. tuberculosis* (CMI 100-200 µg/mL) (Camacho-Corona et al., 2008). De acuerdo a todo lo mencionado anteriormente se proponen las siguientes hipótesis y objetivos.

CAPÍTULO 2 HIPÓTESIS Y OBJETIVOS

2.1 Hipótesis

Los principios antibacterianos y antituberculosos obtenidos de *L. tridentata* poseen actividad contra bacterias patógenas del tracto respiratorio, baja toxicidad y un mecanismo de acción diferente a los fármacos antibacterianos y antituberculosos actuales.

2.2 Objetivo general

Aislar y caracterizar los compuestos responsables de la actividad antibacteriana y antituberculosa de *L. tridentata*, determinar su toxicidad *in vitro* y el mecanismo de acción del compuesto más activo.

2.2.1 Objetivos particulares

- Fraccionar los extractos clorofórmico y metanólico de L. tridentata.
- Separar y purificar los compuestos de los extractos activos.
- Caracterizar los compuestos obtenidos.
- Determinar la actividad antibacteriana y antituberculosa de los compuestos obtenidos.
- Determinar la citoxicidad *in vitro* de los compuestos obtenidos.
- Determinar el mecanismo de acción del compuesto más activo.

CAPÍTULO 3 MATERIALES Y MÉTODOS

3.1 Materiales y Equipos

3.1.1 Fitoquímica

Para la cromatografía en columna (CC) se empleó Gel de sílice (0.040-0.063 mm; (EMD chemical inc). Para la cromatografía en placa fina se emplearon: cromatofolios de gel de sílice 60 F-254 (Fluka analytical). La cromatografía preparativa plana se realizó en cromatoplacas preparativas gel de sílice 60 F-254 20 x 20 cm (Merck). Los eluentes empleados en las cromatografías fueron: cloroformo pureza 98.8% (CHCl₃), metanol pureza 99.999 (MeOH), acetato de etilo pureza 99.99% (AcOEt), hexano pureza 98.999% (CTR Nuevo León, México). Los puntos de fusión fueron determinados en Mel-Temp electrothermal (Barnstead international model 1001D). Los espectros de Resonancia Magnética Nuclear de una dimensión (¹H, ¹³C, DEPT 90, DEPT 135) y dos dimensiones (COSY, NOESY, HMQC, HMBC) se realizaron en los siguientes equipos: Bruker NMR400, Varian NMR-700, Mercury 200, Mercury-200BB; se empleó tetrametilsilano (TMS) como estándar interno; los desplazamientos químicos se reportan en ppm (δ).

3.1.2 Ensayos biológicos

Para todos los ensayos biológicos se emplearon microplacas estériles de 96 pocillos con tapa (Corning Costar, New York). Los ensayos para determinar actividad antibacteriana se empleó: Medio Mueller Hinton (Becton Dickinson, Franklin Lakes, NJ) medio Middlebrook 7H9 (Becton Dickinson, Franklin Lakes, NJ), rezasurina (Biotum, Hayward, CA), ácido oleico, albúmina, dextrosa y catalasa (OADC; Becton Dickinson, Franklin Lakes, NJ), tween 80 (Sigma-aldrish, St Louis, MO), y glicerina (Sigma-aldrish, St Louis, MO). Para los ensayos de citotoxicidad se emplearon cajas petri desechables, frascos de cultivo, membranas de filtración de 0.22 µm de diámetro de

poro (NALGENE, New York), cámara Neubauer (Sigma-aldrish, St Louis, MO.), tubos cónicos de 50 y 100 mL (Falcon, USA), ácido clorhídrico, agua bidestilada, antibiótico de 10,000 unidades de penicilina-10 mg de estreptomicina, azul de tripano (Sigmaaldrish, St Louis, MO), dimetilsulfóxido (J.T.Baker, USA), hidróxido de sodio (Sigmaaldrish, St Louis, MO), medio esencial mínimo (GIBCO, Grand Island, N.Y), solución buffer de fosfatos (PBS), podofilotoxina (Sigma-aldrish, St Louis, MO), suero fetal bovino (GIBCO, Grand Island, N.Y), tripsina-EDTA 1X (Sigma-aldrish, St Louis, MO), WST-1 (Cayman chemical company, Ann Arbor, MI). Espectrofotómetro Bio Assay Reader (BIO-RAD-Benchmark), Incubadora (SANYO, Miami), Invertoscopio (Zeiss, Germany).

3.1.3 Mecanismo de Acción

Cámara de hibridación (Agilent Technologies G2534A), laminilla de empaque (Agilent Technologies G2534 - 60002), microarreglo de *S. aureus* MRSA252 (Mycroarray). kits comerciales de AMBION: RiboPure-Bacteria AM1925 MICROB*Express* AM1905, Amino Allyl cADN Labeling AM1705, Amersham CyDye Post-labelling Reactive Dye Pack RPN5661 de GE Helthcare.

3.2 Estudios de Fitoquímica

La parte fitoquímica se realizó en el Laboratorio de Química de Productos Naturales de la División de Estudios Superiores de la Facultad de Ciencias Químicas, UANL.

3.2.1 Material vegetal

Las hojas de *L. tridentata* se recolectaron en el Municipio de Galeana en el estado de Nuevo León en Abril de 2006. La planta fue identificada por el Biólogo Mauricio González. Una muestra de referencia (Voucher 024772) se depositó en el

Departamento de Botánica de la Facultad de Biología de la Universidad Autónoma de Nuevo León.

3.2.2 Obtención del extracto clorofórmico

Las hojas secas y molidas (500g) se extrajeron primero con hexano (2 x 5 L) y luego con cloroformo (3 x 6 L) por maceración. Los extractos se destilaron por separado en un rota-evaporador se obtuvo un total de 89 g de extracto clorofórmico seco.

3.2.3 Fraccionamiento del extracto clorofórmico

El extracto clorofórmico se sometió a una cromatografía en columna (CC) usando como fase estacionaria (FE) gel de sílice (340 gr) y Fase móvil (FM) un gradiente de CHCl₃/MeOH. Del fraccionamiento del extracto clorofórmico se obtuvieron un total de 13 fracciones de diferentes polaridades (F3-4 100:0; F-5 98:2; F6-7 98:2; F8 95:5; F10 95:5; F11-13 90:10; 85:15; - 80:20).

3.2.4 Aislamiento y purificación de los compuestos del extracto clorofórmico.

Aislamiento y purificación de Lt4. Las fracciónes F3-4 (10 g) fueron sometidas a una CC sobre gel de sílice (300 g) eluída con CHCl₃, se obtuvieron 10 subfracciones (sf). De la sf 6-7 (CHCl₃ 100%) precipitaron unos cristales transparentes, Lt4 (730 mg), los cuales fueron purificados por recristalización en Hexano/AcOEt 80:20.

Aislamiento y purificación de Lt6. La fracción 5 (7g) se sometió a una CC en gel de sílice (90 g) eluida con gradiente CHCl₃/MeOH, se obtuvieron un total de 30 sf de diferentes polaridades (sf1-10 100:0; sf11-24 99:1; sf25-30 95:5, 30ml c/u). De la sf 11-24 precipitó un sólido amarillo, Lt6 (5 mg) soluble en metanol.

Aislamiento y purificación de Lt6a. De la subfracción 25-30 (95:5 (CHCl₃/MeOH) de la fracción F5 (columna original) precipitó un sólido amarillo, Lt6a (4 mg) soluble en metanol.

Aislamiento y purificación de Lt2. Las fracciónes F6-7 (17g) fueron sometidas a una CC sobre gel de sílice (170 g), eluída con gradiente CHCl₃/MeOH, se obtuvieron un total de 29 sf (sf1-6 100:0; sf7-20 95:5; sf21-28 90:10, 85:15, 80:20; sf29 70:30, 50:50, 0:100, 50 ml c/u). De la sf7-20 precipitó un sólido amarillo, Lt2 (32 mg) soluble en CHCl₃.

Aislamiento y purificación de Lt5. De la Fracción 8 (15 g) precipitó en forma espontánea un sólido amarillo soluble en metanol, Lt5 (678 mg), el cual se purificó por recristalización con 98:2 CHCl₃/MeOH.

Aislamiento y purificación de Lt3. La Fracción 9 (9g) se sometió a una CC en gel de sílice (70 g) eluída con un gradiente $CHCl_3/MeOH$ obteniendo un total de 150 fracciones de diferentes polaridades (sf1-10 100:0; sf11-25 98:2; sf26-70 95:5; sf71-85 90:10; sf86-99 85:15; sf100-125 80:20; sf126-140 70:30; sf141-150 50:50). La sf 26-70 se sometió a una cromatografía en placa preparativa en gel de sílice eluida con CHCl₃/MeOH 90:10, se obtuvo un sólido amarillo, Lt3 (86.7 mg) soluble en metanol.

*Aislamiento y purificación de Lt*8. La fracción 10 (18g), se sometió a una CC en gel de sílice (200g) eluida con gradiente CHCl₃/MeOH, se obtuvieron un total de 100 sf de diferente polaridad (sf1-18, 100:0; sf19-36 99:1; sf37-57 98:2; sf58-68 95:5, sf69-78 93:7; sf79-83 90:10; sf84-90 95:15; sf91-100 80:20, 50 ml c/u). La sf 37-57 (0.34418 g) se sometió a una segunda CC sobre gel de sílice (7g) eluída con gradiente CHCl₃/MeOH, se obtuvieron un total de 64 sf de diferente polaridad (sf1-18 100:0; sf19-26 98:2; sf27-48 95:5; sf49-64 90:10, 5 ml c/u). De esta última columna la sf27-48 (0.198 g) se sometió a una tercera CC sobre gel de sílice (3g) usando un gradiente de CHCl₃/MeOH se obtuvieron un total de 105 sf (sf1-41 100:0; sf42-65 98:2; sf66-73
97:3; sf74-97 95:5; sf98-105 95:5). De esta última columna de la sf 42-73 se obtuvo un sólido color beige Lt8 (142.4 mg) soluble en $CHCl_3$.

Aislamiento y purificación de Lt7. Las fracciónes F11-13 (13 g) se sometieron a una CC sobre gel de sílice (130 g) eluída con gradiente CHCl₃/MeOH, se obtuvieron un total de 236 sf de diferente polaridad (sf1-3 100:0; sf4-115 98:2; sf116-133 95:5; sf134-186 90:10; sf187-201 85:15; sf202-224 80:20; sf225-234 70:30; sf235-236 60:40). La sf 225-234 (4g) se sometió a una segunda CC en gel de sílice (80g), se obtuvieron un total de 134 sf de diferentes polaridades (sf1-5 100:0; sf6-19 98:2; sf20-60 95:5; sf61-80 90:10; sf81-106 80:20; sf107-134 70:30). De la última columna la sf 6-19 se sometió a una tercera CC sobre gel de sílice (5g) eluída con un gradiente de CHCl₃/MeOH, se obtuvieron un total de 15 sf de diferentes polaridades (sf1-3 100:0; sf4-7 98:2; sf8-9 95:5; sf10-15 90:10). De la sf 8-9 se obtuvo un sólido color pardo Lt7 (11 mg) soluble en mezcla CHCl₃/MeOH.

3.2.5 Obtención del extracto metanólico

El material vegetal utilizado para la preparación del extracto clorofórmico se recuperó (450 g) y este material se maceró con metanol por 72 h, después se concentró en rotoevaporador se obtuvo un total de 70 gr de extracto seco.

3.2.6 Fraccionamiento del extracto metanólico

El extracto metanólico se sometió a una CC usando como FE gel de sílice (600 gr) y FM un gradiente CHCl₃/MeOH. Del fraccionamiento del extracto metanólico se obtuvieron un total de 15 fracciones de diferentes polaridades (F1-2 100:0; F3-4 99:1; F5-8 98:2; F9-10 95:5; F11 90:10; F12-13 85:15; F14 80:20; F15 70:30; 60:40; 50:50).

3.2.7 Aislamiento y purificación de los compuestos del extracto metanólico.

Aislamiento y purificación de Lt8. La fracción 10 (9.39 g) se sometió a una columna cromatográfica gel de sílice (190 g) eluida con gradiente CHCl₃/MeOH

obteniendo 5 sf (sf1 100:0/99:1/98:2; sf2 93:7; sf3 90:10; sf4 90:10; sf5 90:10). Las sf2 (0.6979 g) se sometió a cromatografía en columna montada con silica gel (15 g) eluida con gradiente CHCl₃/MeOH se obtuvieron 3 sf (sf1 100:0/99:1/99:1; sf2 99:1; sf3 98:2/95:5). Las sf2 y sf3 (0.48732 g) se sometieron a cromatografía en columna gel de sílice (10 g) eluida con gradiente CHCl₃/MeOH obteniendo 3 sf (sf1 100:0/99:1; sf2 99:1; sf2 99:1; sf3 95:5). La sf2 (40 mg) se purificó por cromatografía preparativa eluida con CHCl₃/MeOH 95:5 obteniendo Lt8 (23 mg) sólido beige.

Aislamiento y purificación de Lt10. La fracción 5 (0.9697 g) se sometió a una CC sobre gel de sílice (25 g) la cual fue eluida con gradiente CHCl₃/MeOH se obtuvieron un total de 10 sf de diferente polaridad (sf1-3 100:0; sf4-5 99:1; sf6-7 98:2; sf8 95:5; sf9 90:10; sf10 85:15; 80:20). La sf5 (0.3183 g) se sometió a una CC sobre gel de sílice (7 g) se obtuvieron un total de 15 sf (sf1-10 100:0; sf11-12 99:1; sf13-14 98:2; sf15 95:5). De la sf9 (0.0531 g) se sometió a dos micro CC usando como fase estacionaria gel de sílice (1 g) y fase móvil gradiente CHCl₃/MeOH obteniendo 5 sf (sf1-2 100:0; sf3-5 90:10). De la sf2 se obtuvo un compuesto amarillo oscuro, Lt10 (41.7 mg).

Aislamiento y purificación de Lt 15. La fracción 9 (9.8 g) se sometió a una CC sobre gel de sílice (294 g) eluída con gradientes CHCl₃/MeOH obteniendo 11 sf (sf1 100:0; sf2-5 99:1; sf6-7 97:3; sf8-10 95:5; sf11 90:10;80:20). La sf6-7 97:3 (3.6 g) se sometió a CC sobre gel de sílice (72 g) eluida primero con un gradiente de CHCl₃/Hexano y luego con un gradiente de CHCl₃/MeOH obteniendo 6 sf. De la sf4 precipitó un sólido amarillo oscuro, Lt15 (36.75) mg.

3.2.8 Caracterización estructural de los compuestos del extracto clorofórmico y metanólico.

La caracterización estructural de los compuestos aislados y purificados se realizó por Resonancia Magnética Nuclear de una dimensión (RMN¹H, RMN¹³C, DEPT 90, DEPT 135) y dos dimensiones (COSY, HMQC, HMBC y NOESY).

3.3 Ensayos biológicos.

Los ensayos para determinar la actividad antibacteriana, antituberculosa y la citotoxicidad de los compuestos obtenidos de los extractos se realizaron en el Departamento de Microbiología de la Facultad de Medicina, UANL.

3.3.1 Preparación de las muestras para actividad antibacteriana, antituberculosa y citotoxicidad

Las soluciones stock para la actividad antibacteriana, antituberculosa y citotoxicidad se prepararon disolviendo aproximadamente 1 mg de las muestras a evaluar con dimetilsulfóxido (DMSO) hasta alcanzar una concentración de 20 mg/ml. Las soluciones stock se mantuvieron a -20°C hasta antes de su uso. Las soluciones de trabajo para la actividad antibacteriana, antituberculosa y citotoxicidad se prepararon tomando una alícuota de las soluciones stock y diluyéndolas con medio Mueller Hinton, medio Middlebrook 7H9 enriquecido y medio MEM suplementado, respectivamente.

3.3.2 Actividad antibacteriana

3.3.2.1 Cepas bacterianas y preparación del inóculo.

Para la actividad antibacteriana se utilizaron: Bacterias Gram-negativas: Stenotrophomonas maltophilia ATCC 12714, Escherichia coli ATCC 25922, Acinetobacter baumannii ATCC 15308, Haemophilus influenzae ATCC 49766, Pseudomonas aeruginosa ATCC 27853, Klebsiella pneumoniae ATCC 700603 y Enterobacter cloacae ATCC 35030. Bacterias Gram-positivas: Staphylococcus aureus ATCC29213, Staphylococcus aureus RM ATCC BAA-44, Streptococcus pneumoniae ATCC 49619, Liystera monocytogenes ATCC 19111 y Enterococcus faecalis ATCC 29212. Las cepas fueron inoculadas en placas preparadas con agar-sangre 5%, cultivadas por 24 horas a 37 °C. Para H. influenzae, las cepas fueron inoculadas en 5% agar-chocolate e incubadas en una atmósfera al 5% de CO₂ por 48 horas. Para preparar el inoculo para el ensayo, fueron transferidas de tres a cinco colonias de cada cultivo a tubos con solución salina estéril, y la turbidez se ajustó a 0.5 del estándar de McFarland (1.5 X10⁸ UFC/mL). Posteriormente, se transfirieron 10 µL en 11 mL de caldo Mueller Hinton, para alcanzar 5 x 10⁵ CFU/mL. Se seleccionó el medio HTM para *H. influenzae* y Mueller Hinton con TES/sangre lisada de caballo para *S. pneumoniae*. Los aislados clínicos incluidos fueron: *E. faecalis* (8736, 8561, 8345, 8562, 8568); *E. coli* (8877, 8992, 9122, 8829, 8827); *E. cloacae* (9299, 9220, 9181, 8960, 9234), *S aureus* (9201, 8981, 8857) y *S. aureus* RM (9196, 8927, 9199, 8997, 9200, 8859, 9105).

3.3.2.2 Ensayo biológico

La actividad antibacteriana de los compuestos fue determinada por el método de microdilución (Zgoda et al., 2001). El ensayo se realizó en microplacas de 96 pocillos estériles con tapa. Se adicionaron 100 μ l de medio de cultivo a cada pocillo de toda la placa. Posteriormente, en la fila A se añadieron 100 μ L de la solución de trabajo con una concentración 4X, se mezclaron utilizando una pipeta multicanal, de la mezcla anterior se transfirieron 100 µL a la fila B para realizar una dilución 1:2, se siguió haciendo diluciones 1:2 hasta la fila D y se desecharon los últimos 100 µL. Posteriormente, 100 μ L de la suspensión bacteriana (10⁵) se adicionaron a los pozos con y sin muestra así como a los controles negativos y positivos. Las concentraciones se evaluaron en el rango de 50 a 0.078 µg/mL. Cada concentración se evaluó por duplicado. Posteriormente, las microplacas se taparon, se desinfectaron por su parte externa y se incubaron a 37 °C por 16-20 h. Al término de la incubación, el crecimiento bacteriano se evaluó visualmente para determinar el crecimiento de la bacteria. Todos los ensayos se realizaron por duplicado. Se utilizó levofloxacina como estándar de referencia. Se determinó la concentración mínima inhibitoria (CMI) como la mínima concentración del compuesto que inhibe el crecimiento de la bacteria.

3.3.3 Actividad antituberculosa

3.3.3.1 Preparación del medio Middlebrook 7H9

El medio Middlebrook 7H9 se preparó pesando 4.7g de base caldo Middlebrook 7H9 y añadiendo 20 mL de glicerol al 10% vol/vol, 880 ml de agua. El medio se esterilizó en autoclave por 15 min a 121°C / 15 psi y posteriormente a temperatura ambiente, se le agregó 100 ml de ácido oleico, albúmina, dextrosa y catalasa (OADC). Una vez preparado el medio se guardó en refrigeración hasta su uso.

3.3.3.2 Cepas bacterianas y preparación del inóculo para el ensayo

Para los ensayos biológicos se empleó *M. tuberculosis* H37Rv ATCC 27294 la cuál es sensible a isoniacida, rifampicina, etambutol y pirazinamida; tres aislados clínicos de cepas multifármaco resistentes (MFR) de *M. tuberculosis* las cuales son resistentes a isoniacida y rifampicina. Las cepas se cultivaron en medio Middlebrook 7H9 a 37 °C durante 2 semanas, con el propósito de que alcanzaran la fase logarítmica de crecimiento. El inóculo para el ensayo biológico se preparó diluyendo el cultivo en fase logarítmica hasta ajustar la turbidez al estándar No. 1 de McFarland, luego se diluyó a 1:20 con medio Middlebrook 7H9.

3.3.3.3 Ensayo biológico

La actividad antituberculosa se realizó de acuerdo a lo descrito por Camacho-Corona et al., 2008. El método se basa en que los microorganismos en crecimiento liberan deshidrogenasas (DH) al medio que reducen la resazurina que es de color azul y sin fluorescencia en su forma oxidada a resorufina que es de color rosa y fluorescente en su forma reducida (Figura 2).

Figura 2. Reducción de Resazurina a Resorufina

El ensayo se llevó a cabo en micro placas de 96 pocillos en los cuales se ensayaron seis muestras. Cada concentración se realizó por duplicado. Se colocaron 200 μ L de agua estéril en los pozos de la periferia, en los demás se añadieron 100 μ L de caldo 7H9. Después se añadieron 100 μ L de la solución de extracto 4X en los pozos de concentración más alta (200 μ g/mL), con lo que se obtuvo una concentración de DMSO < 1% v/v en los pozos. Enseguida se realizó una serie de diluciones 1:2 a lo ancho de la placa y posteriormente se añadieron 100 μ l del inóculo bacteriano previamente preparado. Simultáneamente se prepararon tres controles a) 100:100, b) 100:10 y c) 1:100. Los cuales representan el 100%, 10% y 1% de la población bacteriana a ensayar. Las placas se incubaron a 37 °C por 5 días, después, se le adicionaron 20 μ l del reactivo Alamar azul y 12 μ L de Tween 80 al 10% a todos los pocillos, se re-incubaron a 37 °C por 24 horas. Si después de esta incubación se observó cambio de color del reactivo de azul a rosa, se interpretó como crecimiento, si no se observó cambio de color se interpretó como ausencia de crecimiento. Se determinó la CMI de cada uno de los compuestos.

3.3.4 Actividad citotóxica

El ensayo de citotoxicidad se realizó de acuerdo con el método de WST-1 4-[3-(4-oidofenil)-2-(4-nitrofenil)-2H-5-tetrazolio]-1,3-bencen disulfonato, sal de tetrazolio, (C₁₉H₁₂IN₅O₈S₂Na) descrito por Francoeur et al., 1996.

3.3.4.1 Cultivo de células Chang

Para la evaluación de citotoxicidad se utilizaron células Chang las cuales se sembraron en frascos de cultivo usando como nutriente medio esencial mínimo (MEM) preparado a una concentración de 5 mg/mL en agua bidestilada, suplementado al 10% con suero fetal bovino y 1% de antibiótico. El medio suplementado se filtró en una membrana de filtración para esterilizarlo. Los frascos con las células se incubaron a 37 °C en un ambiente de 5% CO₂ y 95% aire, hasta la formación de la monocapa celular, lo cual tomó aproximadamente 2-3 días.

3.3.4.2 Cosecha de células Chang

La monocapa celular se lavó 2 veces con 1 mL de PBS para eliminar restos de MEM, posteriormente se expuso a 1 mL de tripsina al 0.50% durante 5-10 minutos para desprender las células del frasco de cultivo y separarlas entre sí. Al término de este tiempo se adicionaron 2 mL de medio para bloquear la acción de la tripsina. De esta suspensión celular se tomaron 0.1 mL y se mezclaron con 0.1 mL del reactivo Trypan blue en un tubo appendorf, luego se depositaron 0.1 mL de la mezcla en un hemocitómetro (cámara de Neubauer), se cuenta el número de células no teñidas para determinar la concentración de células viables. Se prepara la suspensión bacteriana de trabajo. La densidad celular se ajustó a 50,000 células/mL con el MEM (con suero y antibiótico correspondientes), esta suspensión es utilizada para el ensayo.

3.3.4.3 Ensayo Biológico

A cada pozo de una placa de 96 pocillos se le adicionó 0.1 mL de la suspensión bacteriana con 5 x 10^4 células/mL. La placa se selló e incubó a 37 °C en una atmósfera de 5% de CO₂ y 95% de aire por 24 h. Pasado el tiempo de incubación se le adicionó a cada pozo 100 µL de una solución 2X para obtener la concentración deseada. Las placas se incubaron a 37° C, en un ambiente de CO₂ al 5% y 95% de aire durante 48 h. Se usó como control positivo podofilotoxina y el control negativo solo medio con células. Una vez terminado el tiempo de incubación las células de cada pozo se revisaron microscópicamente con diferentes factores de amplificación (100X, 40X y 20X), con el fin de observar la adhesión celular. Posteriormente, se remplazó el medio que contiene la muestra con 100 µL de MEM fresco y después se le añadieron 10 µL de reactivo WST-1 y se incubó por 2 h a 37 °C, en un ambiente de 5% de CO₂ y 95%. Finalmente se midió la densidad óptica a 450 nm con un lector de ELISA. Se evaluaron seis concentraciones por triplicado y cada experimento se realizó dos veces. Para cada concentración se calculó el porcentaje de viabilidad celular respecto al control de células (celdillas que solo contenían células fueron consideradas como 100%) y se graficaron los resultados. Cabe mencionar que las gráficas se expresaron como % de viabilidad celular con respecto a la concentración y también como % de viabilidad celular con respecto al logaritmo de las concentraciones evaluadas. El valor de la concentración inhibitoria 50 (CI_{50%}) que es la concentración del compuesto que inhibe el crecimiento del 50% de las células ensayadas se obtuvo de la segunda gráfica.

3.4 Determinación del mecanismo de acción del principio antibacteriano más activo.

La determinación del mecanismo de acción del compuesto más activo se realizó en el Laboratorio de Ingeniería Genética y Genómica de la Facultad de Ciencias Químicas, UANL y Departamento de Microbiología de la Facultad de Medicina, UANL.

3.4.1 Compuesto seleccionado

El compuesto que se seleccionó para determinar el mecanismo de acción fue el lignano 3-demetoxi-6-O-demetilisoguaiacina porque fue el compuesto más activo y con un amplio espectro antibacteriano.

3.4.2 Cepa seleccionada.

La cepa que se seleccionó fue *S. aureus* RM, ya que fue la bacteria más sensible al fitocompuesto.

3.4.3 Curva de crecimiento de *S. aureus* RM a concentraciones variables del fitocompuesto.

Para determinar el tiempo de exposición y la concentración del lignano 3demetoxi-6-O-demetilisoguaiacina a la bacteria *S. aureus* RM se realizó una curva de crecimiento. El experimento se llevó a cabo con la técnica de microdilución en placa de 96 pocillos como se describió en el punto 3.3.2.2. Las concentraciones que se probaron del lignano fueron 50, 25, 12.5 y 6.25 μ g/mL. Cada concentración se realizó por duplicado. La densidad óptica de la placa de 96 pocillos se determinó cada hora a 620 nm hasta completar 12 h.

3.4.4 Obtención de concentrados bacterianos

Para la obtención de los concentrados bacterianos, de la condición normal y la condición tratada de *S. aureus* RM, se prepararon dos matraces con 100 mL cada uno de medio Mueller Hinton, ambos matraces se ajustaron a la turbidez de 0.5 del estándar de McFarland (1.5 X10⁸ UFC/mL). Posteriormente, los dos matraces se incubaron por cuatro horas, después al matraz control no se adicionó nada, mientras que al otro se le agregaron de una solución stock de 20000 μ g/mL una cantidad de 0.0625 mL del lignano dando una concentración final en el matraz de 12.5 μ g/mL. Ambos matraces se

incubaron por una hora. Al término del tiempo, los medios de cultivo se colocaron en tubos falcon de 50 mL y se centrifugaron a 3000 rpm por 15 min. Los concentrados bacterianos obtenidos fueron colocados por separado en tubos eppendorf y congelados a -70°C por un tiempo no mayor de 24 h.

3.4.5 Extracción de ARN total

La extracción del ARN total se realizó utilizando el kit comercial RiboPure-Bacteria AM1925 de Ambion. A continuación se describe la metodología que se utilizó, la cual incluye la extracción de ARN total, purificación del ARN total, y remoción de ADN genómico del ARN total.

1. En dos tubos especiales con tapa de rosca se dispensaron 250 μ L de perlas de zirconia.

2. Los concentrados bacterianos previamente obtenidos se descongelaron para ser utilizados para el siguiente paso.

3. Cada concentrado bacteriano se resuspendió en 350 μ L de reactivo ARNwiz y fueron agitados en vortex por 10-15 seg.

4. Los concentrados bacterianos en el reactivo ARNwiz fueron adicionados a los tubos con las perlas de zirconia.

5. Ambos tubos se agitaron por 10 min en vortex con adaptador.

6. Los tubos se centrifugaron por 5 minutos, cada lisado bacteriano se transfirió a un tubo nuevo de 1.5 mL y las perlas se descartaron. Se recuperaron de 200-250 μ L de cada lisado.

7. A cada lisado se le agregaron 500 μ L de cloroformo, posteriormente se mezclaron e incubaron a temperatura ambiente por 10 min (para separar fase acuosa y orgánica).

8. Los tubos se centrifugaron por 5 minutos. Las fases acuosas (arriba) contienen el ARN total parcialmente purificado, estas fases se transfirieron a tubos limpios de 1.5 ml, obteniéndose 200-250 μ L de fase acuosa recuperada.

3.4.5.1 Purificación de cada ARN total.

- A cada fase acuosa (ARN parcialmente purificado) recuperada del paso 8 se le agregó 500 μL de etanol al 100% y se mezcló vigorosamente.
- 2. Un cartucho con filtro se colocó en un tubo de colección de 2 mL, uno para cada muestra. Posteriormente, cada solución se transfirió a su respectivo filtro y se centrifugó hasta que las soluciones pasaron por el cartucho. Los sobrenadantes se descartaron y los cartuchos se colocaron en el mismo tubo de colección.
- 3. Los filtros en los cartuchos se lavaron una vez más adicionando 500 μL de solución de lavado 2/3, posteriormente se centrifugaron por 1 minuto hasta que el líquido pasó por el filtro. El sobrenadante se descartó y los cartuchos se colocaron en sus tubos de colección. Este lavado se repitió una vez más.
- 4. Los cartuchos con los filtros se centrifugaron por 1 minuto para remover el exceso de agua. Los cartuchos con filtro se transfirieron a un tubo nuevo de colección de 2 mL.
- 5. El ARN total contenido en cada filtro se eluyó aplicando 25-50 μL de solución de elución precalentada de 95-100°C al centro de los filtros. Los filtros se centrifugaron. El paso se repitió una vez más para maximizar el rendimiento del ARN. Los cartuchos se descartaron.

3.4.5.2 Remoción del ADN genómico del ARN total con DNasa I.

1. A las muestras se le agregaron 10 μ l de buffer DNasa 10X y 4 μ L de DNasa I.

2. Las muestras fueron incubadas 30 min a 37°C para que la DNasa digiera al ADN genómico.

3. Después de la incubación se agregaron 20 μ l de reactivo inactivador de DNasa a cada muestra y se agitaron en vortex.

4. Las muestras se guardaron a temperatura ambiente y se agitaron eventualmente una o dos veces para resuspender el reactivo que inactiva la DNasa I.

5. Las muestras se centrifugaron por 1 min a velocidad máxima para precipitar el reactivo inactivador de DNasa I, después las soluciones de RNA se transfirieron a un tubo libre de RNasas.

3.4.5.2.1 Análisis de ARN total por electroforesis en el gel de agarosa.

Se corrieron las muestras del ARN en un gel de agarosa al 1%, con buffer trisacetato de sodio-EDTA (TAE, en agua DEPC) 1X en una cámara de electroforesis. Se prepararon 5 μ l de muestra con 2 μ l de buffer de carga (jugo azul), se desnaturalizó a 65°C por 5 minutos, y se corrió el gel durante 5 minutos a 70 Volts, una vez que las muestras atravesaron el gel se corrió por 30 minutos a 120 Volts, posteriomente se adquirió la imagen con un fotodocumentador con el programa Gel Doc XR (BioRad, USA).

3.4.5.2.2 Análisis de ARN por espectrofotometría

El análisis de densidad óptica (DO) $^{260}/_{280}$ se realizó en un biofotómetro (Eppendorf, Alemania) para cada muestra, se colocó 1 µl de ARN con 99 µl de Agua-DEPC. Se consideró ARN de calidad si mantenía una DO $^{260}/_{280}$ entre 1.8-2.0

3.4.6 Obtención del ARNm

Para la obtención del ARNm se utilizó un kit MICROB*Express* AM1905 de Ambion. Este kit utiliza reactivos optimizados y condiciones para capturar y remover esencialmente ARNr (16S y 23S) para más de 10 µg de ARN total purificado.

A continuación se describe la metodología que se utilizó para la obtención del ARNm, la cual consta de templado de ARN y mezcla de oligonucleótidos de captura; preparación de perlas magnéticas; captura de ARNr y recuperación de ARNm enriquecido y precipitación y resuspensión del ARNm enriquecido.

3.4.6.1 Templado de ARN y mezcla de oligonucleótidos de captura.

 En un tubo de 1.5 mL se colocaron 5 μg de ARN total de la condición normal y en otro tubo se colocaron 5 μg de ARN total pero de la condición tratada, después se agregaron 200 μl de "Buffer de unión" y se mezclaron vigorosamente.

- 2. A los ARN mezclados con "Buffer de unión" se les agregaron 4 μ L de "Mezcla de captura de oligos"
- Las mezclas se incubaron a 70°C por 10 minutos para desnaturalizar las estructuras secundarias en ARN, incluyendo los ARN ribosomales 16S y 23S. Este calor desnaturalizante facilita la máxima hibridación de los ARNrs a los Oligonucleótidos de Captura.
- 4. Se realizó una segunda incubación a 37°C por 15 minutos. Esta incubación permite a los oligonucleótidos de captura hibridarse a las regiones homólogas de los rARNs 16S y 23S. El buffer de unión es optimizado para funciones específicas y eficientemente a esta temperatura.

3.4.6.2 Preparación de las perlas metálicas

- Para cada muestra de ARN se prepararon dos tubos de 1.5 mL con 50 μL de perlas metálicas.
- Los tubos preparados se colocaron en el soporte magnético hasta que las perlas fueron acarreadas hasta la parte magnética. El sobrenadante de cada tubo fue descartado cuidadosamente para cuidar las perlas.
- Se agregaron a las perlas metálicas de cada tubo 50 μL de agua libre de nucleasas para resuspenderlas y lavarlas. Las perlas se recapturaron con el soporte magnético, se descartó el sobrenadante.
- Se agregaron a las perlas metálicas 50 μl de "Buffer de unión" para el equilibrio de cada tubo, se suspendieron y posteriormente las perlas fueron recapturadas con el soporte magnético. El sobrenadante se descartó.
- 5. Nuevamente a cada tubo con las perlas metálicas se le agregaron 50 μ L de buffer de unión y se incubaron a 37°C.

3.4.6.3 Captura de ARNr y recuperación de ARNm enriquecido.

1. El ARN de la condición tratada y de la condición normal en solución de mezcla de captura de oligos se agregaron respectivamente a los 50 μ l de las perlas metálicas previamente preparadas. Las condiciones se incubaron a 37°C por 15 minutos.

2. Los tubos con las perlas magnéticas se colocaron en el soporte magnético hasta su completa adhesión. El sobrenadante el cual contiene el ARNm se tomó cuidadosamente y se colocó en un tubo colector.

3. Las perlas metálicas se suspendieron en 100 μ L de solución de lavado a 37°C para recobrar cualquier remanente de mARN. El procedimiento que se realizó fue como en el paso 2.

3.4.6.4 Precipitación y resuspensión de los ARNms enriquecidos

1. A cada muestra de ARN se agregaron 35 μ L de acetato de sodio y 7 μ L de glucógeno. Posteriormente se les agregaron 1175 μ L de etanol frío al 100%, se mezclaron y precipitaron a -20°C por una hora. Después se centrifugaron por 30 min a 13000 rpm y se decantó el sobrenadante. A continuación se realizó un lavado con 750 μ L de etanol al 70 %, las muestras, se centrifugaron por 5 minutos a 10000 rpm y el sobrenadante se removió con cuidado para no mezclar el mARN precipitado.

2. Los concentrados de los mARNs se resuspendieron en 25 μ L de TE (10 mM Tris-HCl pH 8, 1 mM EDTA) o agua libre de nucleasas.

3.4.7 Obtención de los ADNc marcados con fluoróforos

Para la obtención de ADNc marcados con fluoróforos Cy3 y Cy5, se utilizó un kit "Amino Allyl cADN Labeling AM1705" de AMBION. El kit usa un proceso de dos pasos para hacer fluorescentes los ADNc marcándolos con colorantes para su uso en experimentos de microarreglos. En el primer paso, ADNc es sintetizado de una muestra de ARNm por una retrotranscripción; uno de los nucleótidos (dTTP) es parcialmente sustituido con un análogo conteniendo un grupo amino primario reactivo (amino Allyl dUTP). Después de la reacción de retrotranscripción, la muestra de ARN es eliminado del ADNc por hidrólisis alcalina, la reacción es neutralizada y el ADNc modificado de amino allyl es recuperado por precipitación con etanol. En el segundo paso, el ADNc modificado con el amino allyl es acoplado con los colorantes fluorescentes por incubación (Cy3 y Cy5). La reacción de acoplamiento es terminada por la adición de

hidroxilamina, después es pasada por una columna. El ADNc es concentrado por precipitación por etanol. A continuación se muestra el procedimiento que se realizó a cada muestra.

3.4.7.1 Retrotranscripción de las muestras del ARNm

1. De cada ARNm obtenido previamente se tomaron 10 μ g y se colocaron en tubos libres de nucleasas, después se agregaron 1 μ L de decámeros al azar y 9 μ L de agua libre de nucleasas. Las mezclas se incubaron a 75°C por 10 minutos. Después de este tiempo, los tubos se centrifugaron para colectar el contenido del fondo, se conservaron a temperatura ambiente.

2. A las reacciones anterioriores se les agregaron 2μ L de 10X RT buffer, 1 μ L de inhibidor de RNAsa, 1 μ L de dNTP mix y 2 μ L de M-MLV transcriptasa reversa. Se mezclaron muy bien.

3. La reacción con la transcriptasa reversa de las muestras se incubó a 42°C por 2 h.

4. A las reacciones anteriores se les agregó 4 μ L de 1M NaOH y se incubaron a 65 °C por 15 minutos.

5. A las reacciones anteriores se les agregó 10 µL de 1M HEPES para neutralizarlas.

6. Para precipitar el ADNc de ambas condiciones se agregaron $3.4 \ \mu L$ de 3M de Acetato de sodio y 100 μ L de etanol al 100%, se mezclaron e incubaron 30 min a -20°C. Se centrifugaron por 15 minutos a 12000 rpm a 4°C y cuidadosamente se descartó el sobrenadante. Los precipitados se lavaron añadiendo 0.5 mL de etanol al 75%. Nuevamente los tubos se centrifugaron 5 minutos a temperatura ambiente y cuidadosamente se descartó el sobrenadante.

3.4.7.2 Acoplamiento del colorante al amino modificado de ADNc

 Los fluoróforos Cy3 y Cy5 se disolvieron en 3 μL de DMSO y se mantuvieron en la oscuridad hasta su uso.

- 2. Dos columnas NucAway Spin se rehidrataron con 650 μ L de agua libre de nucleasas por 1-2 h, se centrifugaron y guardaron a temperatura ambiente hasta su uso.
- Los ADNc precipitados se resuspendieron en 4.5 μL de Buffer de acoplamiento y se mezclaron.
- 4. 2.5 μ L de agua libre de nucleasas se agregaron a las muestras, se mezclaron y centrifugaron.
- 5. 3 μL del fluoróforo Cy3 previamente preparado se agregaron al ADNc de la condición normal y 3μL del fluoróforo Cy5 se agregaron al ADNc de la condición tratada. Se mezclaron, centrifugaron y se colectó el líquido. Las condiciones con los colorantes se incubaron a temperatura ambiente en la oscuridad por una hora.
- 6. A las mezclas anteriores se les agregaron 6 μL de hidroxilamina 4M, después se mezclaron, centrifugaron y colectaron los líquidos. Se Incubaron por 15 minutos a temperatura ambiente en la oscuridad.

3.4.7.3 Purificación y concentración de los ADNc marcados con los fluoróforos.

1. Las columnas prehidratadas NucAway Spin se colocaron en tubos de colección y se centrifugaron por dos minutos para remover el exceso de líquido.

2. Se ajustó el volumen del ADNc marcado a 85 μ L con agua libre de nucleasas y se pasó el volumen cuidadosamente por el centro de la columna prehidratada colocada en un tubo de colección de 1.5 mL. Se centrifugó el tubo con la columna para que el líquido pasara a través de ésta. Se descartartó la columna.

3. El ADNc marcado de cada condición se precipitó agregando 9 μ L de acetato de sodio 3M y 250 μ L de etanol 100%. Se incubaron 30 minutos a -20°C. Posteriormente se centrifugaron por 15 minutos a 4°C, después se descartó el sobrenadante. Los precipitados de cada condición se lavaron añadiendo 500 μ L de etanol al 75%, en seguida se centrifugaron a 4°C por 15 minutos.

4. Los precipitados de cada condición Cy3 y Cy5 se suspendieron en 10 μ L de agua libre de nucleasas.

Después de obtener los ADNc marcados Cy3 de la condición normal y Cy5 de la condición tratada, se prosiguió a realizar la hibridación con el microarreglo.

3.4.8 Microarreglos

Para realizar los microarreglos se llevaron a cabo varias etapas: preparación de solución de hibridación, hibridación dinámica con cámara de hibridación Agilent, protocolo de lavados, lectura de microarreglos y análisis bioinformático.

3.4.8.1 Preparación de solución de hibridación

Se procedió a preparar soluciones de hibridación para 10 μ g de la condición normal y 10 μ g de la condición tratada con SSPE 6X (sal-sodio-fosfato-ácido etilendiaminotetraacético; NaCl 3M, EDTA 20 mM, NaH₂PO₄ 118.2 mM y Na₂HPO₄ 81.8 mM), 10% de formamida, 0.01 mg/mL de albumina de suero bovino acetilada, 0.01% tween 20, 1% control de oligos. Las soluciones se agitaron y centrifugaron para colectar la mezcla en el fondo de los tubos, después se incubaron a 65 °C por 5 minutos y finalmente se colocaron en hielo por lo menos 5 minutos.

3.4.8.2 Hibridación dinámica

La hibridación se realizó en la cámara de hibridación bajo las condiciones como lo indica el proveedor en su protocolo. La cámara de hibridación así como la laminilla de empaque y el microarreglo se precalentaron a 65°C por 15 minutos y se realizó el siguiente procedimiento.

 La laminilla de empaque se colocó hacia arriba y el extremo con la etiqueta de la laminilla se posicionó firmemente asentada contra el lado final de la base de la cámara.
 Se agregaron 255 µL de la solución de hibridación al centro de la laminilla de empaque.

3. Rápidamente se colocó el microarreglo encima de la laminilla de empaque. Se tomaron las siguientes consideraciones: el microarreglo debe estar hacia abajo (la

superficie de la matriz dirigida a la laminilla de empaque). El final del microarreglo sin el código de barras debe estar sentado contra la parte de metal de la cámara y en contacto con el extremo de la laminilla de empaque con la etiqueta en un ángulo de 45 grados. Se tomó y mantuvo el microarreglo por los bordes cercanos del código de barras del final y se bajó lentamente el microarreglo para que la solución de hibridación entrara en contacto con el microarreglo. Se soltó el microarreglo una vez que estuvo sobre la laminilla de empaque. Se aseguró de que la etiqueta del extremo de la laminilla de empaque y el extremo final sin marca del microarreglo quedaran al mismo nivel y firmemente contra la base de la cámara de hibridación para asegurar el posicionamiento correcto del microarreglo dentro del empaque.

4. Se colocó la tapa de metal de la cámara en la parte superior del microarreglo.

5. El juego de pinzas sujetadoras se ajustaron adecuadamente.

6. La cámara de hibridación totalmente montada se giró manualmente hasta que una burbuja única se observó mover libremente.

7. La cámara de hibridación se colocó en el horno. La velocidad del rotor del horno de hibridación se mantuvo a 4 rpm para que la burbuja interior se moviera libremente.
8. Se hibridó a 40°C por 24 horas.

3.4.8.3 Protocolo de lavado.

1. El microarreglo y la laminilla de empaque montada en la cámara de hibridación se removieron y se sumergieron en un baño de 1X SSPE. Después, cuidadosamente se insertaron unas pinzas planas entre la laminilla de empaque y el microarreglo para separarlos.

2. El microarreglo se tomó y se sumergió en buffer de lavado fresco 1X SSPE por 3 minutos y se agitó cuidadosamente.

3. El microarreglo se removió del buffer anterior cuidadosamente y rápidamente se transfirió a solución de lavado fresca 1X SSPE por 3 minutos.

4. El microarreglo se transfirió a buffer fresco 0.25X SSPE por 30 segundos. Después se removió y rápidamente se eliminó el exceso de buffer con movimiento veloz.

5. Finalmente, el microarreglo se secó en la centrífuga de microarreglos. Se tomaron las debidas precauciones para no dañarlo.

3.4.8.4 Lectura y cuantificación de microarreglo

Se tomó el microarreglo con mucho cuidado sin tocar la zona de impresión donde están las sondas hibridadas y se procedió a lo siguiente:

1. Se encendió el escáner y la computadora en interfase.

- 2. Se accedió al software Acuity 4.0 (Axon, molecular Devices, USA)
- 3. Se colocó la laminilla con la impresión boca abajo en el escáner

4. Dentro del software se utilizó el icono correspondiente a la adquisición de imágenes.
Este de manera automática hizo dos lecturas, una para cada longitud de onda (555 nm y 647 nm) de acuerdo a cada fluoróforo.

5. Una vez finalizada la corrida, el software generó tres imágenes, una para el canal 555 nm, otra para el canal 647 nm y una que combina ambos canales 555/647. Se utilizó el comando Save Images y se procedió a dar nombre y guardar las imágenes en la carpeta deseada.

6. Posteriormente se procedió a crear la rejilla o retícula, la cual debe coincidir con cada uno de los puntos de impresión o "spots" en el arreglo, para esto se seleccionó el comando Grid y se insertaron los datos correspondientes al arreglo: número de columnas por bloque (24), número de renglones por bloque (47), número total de bloques (32) y la distancia entre aplicaciones (200 μ m). Posteriormente esa rejilla fue copiada a cada uno de los diferentes bloques del microarreglo.

7. Una vez generada la rejilla, se alinearon cada uno de los spots con cada uno de las zonas (Círculos) para que el equipo realizara la lectura. Este proceso se hizo manualmente, con el cursor se tomó cada uno de los círculos desfasados y se alineó con el spot correspondiente

 8. El siguiente paso fue realizar el análisis, para esto se utilizó el comando Analysis, y de manera automática mostró una lista de valores de media y mediana intensidad (555, 647 y 555/647) y valores de media y mediana del fondo (555, 647 y 555/647) para cada spot, que corresponda a un gen. 9. Para finalizar se guardó la lista o base de datos en una carpeta correspondiente al experimento.

3.4.9 Análisis bioinformático

Una vez obtenidas las listas de genes del experimento, los resultados se analizaron con ayuda de herramientas de bioinformática, en bases de datos como Babelomics v4.2 (http://babelomics.bioinfo.cipf.es), Data base for Annotation, Visualization and integrated Discovery (DAVID 6.7, http://david.abcc.ncifcrf.gov/), Kyoto Encyclopedia of Genes and Genomes (KEGG, http://www.genome.jp/kegg/), GenBank (http://www.ncbi.nlm.nih.gov/genbank/). Para realizar este tipo de análisis, todas las opciones funcionan de manera similar, se copió la lista de genes de interés y se seleccionó el comando "Analyze" en el menú de opciones, posteriormente se obtuvo un desplegado con los genes agrupados de acuerdo a su función.

3.5 Disposición de residuos: parte fitoquímica, ensayos biológicos, y mecanismo de acción.

La disposición de los residuos de la parte experimental se realizó en base a las normas establecidas por el departamento de manejo y control de residuos de la Facultad de Ciencias Químicas y de la Facultad de Medicina de la UANL.

CAPITULO 4 RESULTADOS Y DISCUSIÓN

4.1 FITOQUÍMICA

De la planta *L. tridentata* se obtuvieron dos extractos un clorofórmico y un extracto metanólico. Ambos extractos se fraccionaron por separado y las fracciones fueron sometidas a varias cromatografías lográndose ailar ocho compuestos del extracto clorofórmico (Lt4, Lt6, Lt6a, Lt2, Lt5, Lt3, Lt8, Lt7) y tres del extracto metanólico (Lt8, Lt10, Lt15). La elucidación estructural de los compuestos obtenidos se discute a continuación.

4.1.1 Elucidación estructural de los compuestos aislados del extracto clorofórmico.

4.1.1.1 Elucidación estructural del ácido dihidroguaiarético (Lt4).

La Figura 3 muestra el espectro de RMN ¹H del compuesto Lt4 donde se observa un doblete a δ 0.843 (6H, d, J = 6.76 Hz, H-9, H-9') de dos metilos unidos cada uno a un metino, un multiplete a δ 1.75 (2H, m, H-8 y H- 8'), dos dobles de dobles de dos protones bencílicos a δ 2.29 (2H, dd, J = 13, 9 Hz, H-7b, 7b') y 2.73 (2H, dd, J = 13, 5 Hz, H-7a,7a') que se acoplan entre si y con grupo metino vecino; un singulete a δ 3.87 (6H, s, OMe-3, OMe-3') de dos metoxílos aromáticos, un singulete a δ 5.48 (2H, s, OH-4,OH-4') de dos hidroxilos, un doblete a δ 6.62 (2H, d, J = 1.81 Hz H-2 y H-2') que resulta del acoplamiento entre dos protones meta-relacionados (H-2 y H-6; H-2' y H-6'), un doble de doble a δ 6.66 (2H, dd, J= 1.81, 8 Hz, H-6 y H-6') que corresponde al acoplamiento de H-6 con H-5 y H-2 así como H-6' con H-5' y H-2' y finalmente un doblete a δ 6.83 (2H, d, J = 8 Hz, H-5, H-5') resultante del acoplamiento entre H-5/H-6 y H-5'/H-6'.

La Figura 4 muestra el espectro de RMN ¹³C donde se aprecian las señales de los 20 carbonos, de las cuales 12 carbonos son aromáticos δ : 111.41 (C-2,C-2[']), 113.93 (C-

5,C-5´), 121.68 (C-6,C-6´), 133.76 (C-1,C-1´), 143.52 (C-3,C-3´), 146.28 (C-4,C-4´); 6 carbonos alifáticos δ: 16.19 (C-9, 9´), 38.86 (C-7,C-7´), 39.16 (C-8,C-8´); así como dos carbonos de dos metoxilos en δ 55.82 (OMe-3, 3´).

La Figura 5 muestra el espectro de HMQC con las siguientes correlaciones de protón /carbono trece: CH₃-9, 9'/ H-9,9'; C-8,8'/ H-8,8'; C-7'/H-7b, C-7/H-7a; MeO-3,3'; C-2,2'/H-2,2'; C-6,6'/ H-6,6'; C-5,5'/H-5,5'.

La Figura 6 muestra el espectro COSY de Lt4 con las siguientes correlaciones: protón-protón: H-5,5[']/H-6,6[']/H-2; H-7a,7a[']/H-7b,7b[']; H-9,9[']/H8,8['].

El análisis de los espectros de RMN de 1D y 2D, y la comparación de las constantes espectroscópicas con los previamente reportadas por Gnabre et al., 1995, así como con la comparación con una muestra auténtica (Salinas-Salazar et al., 2009) permitieron concluir que el compuesto Lt4 es el ácido dihidroguaiarético.

Figura 3. Espectro de RMN ¹H (400 MHz, CDCl₃/CD₃OD) de ácido dihidroguaiarético (Lt4) ₄₂

Figura 4. Espectro de RMN ¹³C (100 MHz, CDCl₃) de ácido dihidroguaiarético (Lt4) ⁴³

Figura 5. Espectro de HMQC de ácido dihidroguaiarético (Lt4)

Figura 6. Espectro de COSY del ácido dihidroguaiarético (Lt4)

4.1.1.2 Elucidación estructural de 4-epi- larreatricina (Lt7)

La Figura 7 muestra el espectro de RMN ¹H del compuesto Lt7 donde se observa un doblete a δ 1.0 (6H, d, J = 6 Hz H-9 y H-9') de dos metilos unidos cada uno a un metino, un multiplete a δ 1.80 (2H, m, H-8, H-8'), un doblete a δ 4.60 (2H, d, J = 9.6 Hz, H-7,H-7') que resulta del acoplamiento de H-7 con H-8 y finalmente un sistema A₂B₂ en δ 6.80 (4H, d, J = 8.4 Hz, H-3,3', H-5,5') y δ 7.12 (4H, d, J = 8.4 Hz, H-2,2', H-6,6') de dos anillos aromáticos para-disustituídos.

La Figura 8 muestra el espectro de RMN 13 C con señales para 18 carbonos de los cuales, 12 son aromáticos δ : 115.24 (C-3,3', C-5,5'), 128.43 (C-2,2', C-6,6'), 132.96 (C-1,1'), y 156.15 (C-4,4'), así como 6 carbonos alifáticos δ : 13.54 (C-9,9'), 50.65 (C-8,8') y 88.30 (C-7,7').

La Figura 9 muestra los espectros de DEPT-90 con las señales de 6 carbonos de metinos que corresponden a CH-8,8'; CH-7,7'; CH-3,3', CH-5,5'; CH-2,2', CH-6,6'. En esa misma Figura se observa el espectro DEPT 135 con las señales de los 4 carbonos metinos (los mimos que el espectro anterior) así como la señal de dos metilos CH₃-9,9'.

La Figura 10 muestra el espectro COSY en donde se observan las correlaciones siguientes: H-9,9'/H8,8'; H-8,8'/H-9,9'/H-7,7'; H2,2', H6,6'/H-3,3', H-5,5'.

La Figura 11 muestra el espectro de HMQC con las correlaciones siguientes: C-9,9'/H-9,9'; C-8,8'/H-8,8'; C-7,7'/H7,7', C-3,3',C-5,5'/ H-3,3',H-5,5'; C-2,2', C-6,6'/ H-2,2', H-6,6'.

El análisis de los espectros de RMN de 1D y 2D y la comparación de las constantes espectroscópicas con las previamente reportadas por Konno et al., 1990 permitió concluir que el compuesto Lt7 es la 4-epi larreatricina.

Figura 7. Espectro de RMN ¹H (400 MHz, CDCl₃/CD₃OD) de 4-epi-larreatricina (Lt7) 47

Figura 8. Espectro de RMN ¹³C (100 MHz, CDCl₃/CD₃OD) 4-epi-larreatricina (Lt7)

Figura 9. Espectro DEPT 135 Y DEPT 90 de 4-epi-larreatricina (Lt7)

49

Figura 11. Espectro de HMQC de 4-epi-larreatricina (Lt7)

51

4.1.1.3 Elucidación estructural de 3'-demetoxi-6-O-demetilisoguaiacina (Lt8)

La Figura 12 muestra el espectro de RMN ¹H del compuesto Lt8 donde se observa la presencia de dos dobletes de metilos en δ 0.83 (3H, d, J = 2.4 Hz, H-9'), 0.84 (3H, d, J = 2.8 Hz, H-9) que se acoplan cada uno con un protón vecino; dos multipletes de metinos a δ 1.80 (1H, m, H-8') y δ 1.90 (1H, m, H-8); dos doble de dobles de protones metileno no equivalentes a δ 2.28 (1H, dd, J = 16.4, 7.6 Hz, H-7b,7'b) y δ 2.69 (1H, dd, J = 16.4, 5.2 Hz, H-7a, 7'a) que se acoplan a su vez con un protón vecino; un doblete de un metino dibencílico a δ 3.53 (1H, d, J = 6.4 Hz, H-7') que se acopla con un proton vecino; dos singuletes de protones aromáticos en disposición para en δ : 6.24 (1H, s, H-6) y 6.55 (1H, s, H-3) de un anillo tetrasustituido; un sistema A₂B₂ a 6.66 (2H, d, J=8.4 Hz, H-3', H-5') y δ 6.82 (2H, d, J = 8.3 Hz, H-2', H-6') de un anillo aromático para-disustituído.

La Figura 13 muestra el espectro de RMN ¹³C con señales para 18 carbonos de los cuáles 12 carbonos son aromáticos δ : 114.71 (C-3',C-5'), 114.79 (C-6), 116.73 (C-3), 128.35 (C-1), 130.10 (C-2',6'), 141.99 (C-4), 142.48 (C-5), y 154.20 (C-4'); 6 carbonos alifáticos δ : 15.64 (C-9'), y 15.94 (C-9), 28.98 (C-8'), 34.82 (C-7), 40.68 (C-8), 49.93 (C-7').

La Figura 14 muestra el espectro DEPT-90 donde se observan las señales de 9 metinos: CH-8', CH-8, CH-7, CH-3', CH-5', CH-6, CH-3, CH-2', CH-6'. En esa misma figura se observa el espectro de DEPT-135 con las señales de 9 metinos (los mismos que se observaron en el DEPT-90) mas un metileno CH_2 -7 y dos metilos CH_3 -9 y CH_3 -9.

En la Figura 15 se muestra el espectro de COSY con las siguientes correlaciones H-9, 9'/H-8, 8'; H-7a,7b/H-8/H-9, 9'; H-8'/H-7'; H-6', H-2'/H-3',H-5, H-7'/H8.

La Figura 16 muestra el espectro de HMQC con las siguientes correlaciones: C-9,9'/H-9,9', C-8/H-8, C-8'/H-8', C-7/H-7a,7b; C-7'/H-7', C-3',C-5'/H-3',5'; C-6/H-6, C-3/H-3, C-2',6'/H-2',6'. El análisis de los espectros de RMN de 1D y 2D y la comparación de las constantes espectroscópicas con las previamente reportadas por Konno et al., 1990 permitieron concluir que el compuesto Lt 8 es la 3'-demetoxi-6-O-demetilisoguaiacina.

Figura 12. Espectro de RMN¹H (400 MHz, CDCl₃) de 3'-demetoxi-6-O-demetilisoguaiacina (Lt8) 54

Figura 13. Espectro de RMN¹³C (100 MHz ,CDCl₃) de Lt8 3'-demetoxi-6-O-demetilisoguaiacina 5

Figura 14. Espectros DEPT 90 y DEPT 135 de 3'-demetoxi-6-O-demetilisoguaiacina (Lt8)

Figura 15. Espectro de COSY de 3'-demetoxi-6-O-demetilisoguaiacina (Lt8)

Figura 16. Espectro de HMQC de 3'-demetoxi-6-O-demetilisoguaiacina (Lt8)

En la Tabla 6 se resumen las constantes espectroscópicas de los lignanos obtenidos del extracto clorofórmico.

	Lt4		Lt7		Lt8	
No	δ^{1} H (<i>J</i> =Hz)	$\delta^{13}C$	δ^{1} H (<i>J</i> =Hz)	$\delta^{13}C$	δ^{1} H (<i>J</i> =Hz)	$\delta^{13}C$
1		133.76		132.96		128.35
2	6.62, d (1.812)	111.41	7.11, d (8.8)	128.43		
3		143.52	6.80, d (8.4)	115.24	6.55, s	116.73
4		146.28		156.15		141.99
5	6.83, d, (8)	113.93	6.80, d (8.4)	115.24		142.48
6	6.66, dd, (8.0)	121.68	7.12, d (8.4)	128.43	6.24, s	114.79
7		38.86	4.60, d (9.6)	88.30		34.82
7a, 7'a	2.73, dd, (13, 5)				2.69, dd, (16.4,5.2)	
7b, 7'b	2.29, dd,(13,9)				2.28, dd, (16.4,7.6)	
8	1.75 , m	39.16	1.80, m	50.65	1.90, m	40.68
9					0.76, d (6.84)	15.63
1'		133.76		132.96		
2'	6.62 d, (1.812)	111.41	7.12, d (8.4)	128.43	6.82, d (8.4)	130.10
3'		143.52	6.80, d (8.4)	115.24	6.66, d (8.4)	114.71
4'		146.28		156.15		154.20
5'	δ: 6.83 d, (8)	113.93	6.80, d (8.4)	115.24	6.66, d (8.4)	114.71
6'	6.66, dd, (8.0, 1.86)	121.68	7.11, d (8.8)	128.43	6.82, d (8.4)	130
7'		38.86	4.60, d (9.6)	88.3	3.53, d (6.4)	49.93
8'	1.75, m	39.16	1.80,m	50.65	1.80, m	28.98
9'					0.76, d, (6.84)	15.24
OH-4	5.48, s					
OH-4'	5.48 , s					
Me-3					0.	
Me-3'						
Me-9					0.84	15.64
Me-9'	2.06	55.02			0.83	15.94
MeO-3	5.86,	55.83				
MeO-9	0.843, d,(6.76)	16.19	1.0, d (6)	13.54		
MeO-3	3.87, s	55.83				
MeO-9'	0.843, d,(6.76)	16.19	1.0, d (6)	13.54		

TABLA 6. CONSTANTES ESPECTROSCÓPICAS DE LOS LIGNANOSOBTENIDOS DEL EXTRACTO CLOROFÓRMICO

A continuación se discute la elucidación estructural de los flavonoides del extracto clorofórmico.

4.1.1.4 Elucidación estructural de 5,4´-dihidroxi-3,7,8,3´-tetrametoxiflavona (Lt2)

La Figura 17 muestra el espectro de RMN ¹H del compuesto Lt2 donde se observan cuatro singuletes de metoxilos aromáticos δ : 3.785 (3H, s, OMe-3'), 3.848 (3H, s, OMe-8) 3.879 (3H, s, OMe-7) y 3.917 (3H, s, OMe-3). Luego aparece un singulete de un protón de hidroxilo a δ 6.0 (1H, s, C-4'-OH), un singulete de un protón aromático δ 6.35 (1H, s, H-6), tres protones aromáticos de un sistema ABC δ : 7.0 (1H, d, J = 8 Hz, H-5'), 7.71 (1H, d, J = 2 Hz, H-2'), y 7.73 (1H, dd, J = 8, 2 Hz, H-6'), y por último un singulete de un protón de un hidroxilo que esta quelatado con un grupo carbonilo de la posición 4 a δ 12.40 (1H, s, 5-OH).

La Figura 18 muestra el espectro de RMN ¹³C donde se observan las señales de 19 carbonos de los cuáles 12 son aromáticos δ : 95.42 (C-6), 105.32 (C-4a), 110.79 (C-6'), 114.73 (C-5'), 122.66 (C-1'), 122.88 (C-2'), 128.79 (C-8), 138.63 (C-3'), 146.40 155.73 (C-4'), 157.37 (C-5), 159.35 (C-7), 158.38 (C-8a). Dos carbonos heterocíclicos δ 148.44 (C-2) y 146.40 (C-3); un carbonillo δ 179.01 (C-4) y cuatro carbonos de metoxilos aromáticos δ : 56.00 (OMe-3), 56.39 (OMe-7), 60.14 (OMe-3'), 61.58 (OMe-8).

La Figura 19 muestra el espectro de COSY donde se observan las siguientes correlaciones: H-2'/H-5'/H-6'.

La Figura 20 muestra el espectro de HMQC donde se observan las correlaciones siguientes: CH_3O-3'/CH_3O-3' ; CH_3O-8/CH_3O-8 ; CH_3O-7/CH_3O-7 ; CH_3O-3/CH_3O-3 ; C-6/H-6; C-5'/H-5'; C-2'/H-2'; C-6'/H-6'.

El análisis de las constantes espectroscópicas de RMN de 1D y 2D así la comparación de las constantes espectroscópicas con las previamente descritas por Bernhard y Thiele., 1981, permitieron concluir que el compuesto Lt 2 es la 5,4'- dihidroxi-3,7,8,3'-tetrametoxiflavona

Figura 17. Espectro de RMN ¹H (400 MHz, CDCl₃) de 5,4'-dihidroxi-3,7,8,3'-tetrametoxiflavona (Lt2) 61

Figura 18. Espectro de RMN¹³C (100 MHz, CDCl₃) de 5,4'-dihidroxi-3,7,8,3'-tetrametoxiflavona (Lt2) 62

Figura 19. Espectro de COSY de 5,4'-dihidroxi-3,7,8,3' -tetrametoxiflavona (Lt2)

Figura 20. Espectro HMQC de 5,4'-dihidroxi-3,7,8,3'-tetrametoxiflavona (Lt2)

4.1.1.5 Elucidación estructural de 5,4'-dihidroxi-3,7,8-trimetoxiflavona (Lt5)

La Figura 21 muestra el espectro de RMN ¹H del compuesto Lt5 donde se observan tres singuletes de metoxilos aromáticos δ 3.79 (3H, s, CH₃O-3), 3.85 (3H, s, CH₃O-7) y 3.90 (3H, s, MeO-8), un singulete de un protón aromático a δ 6.59 (1H, s, H-6), dos dobletes que conforman un sistema A₂B₂ en δ 6.97 (2H, d, *J*= 8.8 Hz, H-3['], H-5[']) y δ 7.97 (2H, d, *J*= 8.7 Hz, H-2['], H-6[']), un singulete de un protón de hidroxilo a δ 10.37 (1H, s, OH-4[']) y un singulete de un hidroxilo a δ 12.50 (1H, s, OH-5) que esta quelatado con un grupo carbonilo de la posición 4.

La Figura 22 muestra el espectro de RMN ¹³C con señales de 18 carbonos de los cuáles 12 carbonos son aromáticos δ : 95.66 (C-6), 97 (C-8), 105.424 (C-4a), 116.036 (C-3', C-5'), 121.73 (C-4'), 129.28 (C-7), 130.698 (C-2', C-6'), 148.775 (C-8a), 157.24 (C-5), 158.69 (C-8). Dos carbonos de un heterociclo δ : 160.49 (C-2) y 138.70 (C-3); un carbonilo δ 179.37 (C-4) y tres metoxilos aromáticos δ : 56.57 (MeO-3), 60.25 (OMe-8), 61.85 (OMe-7).

La Figura 23 muestra el espectro COSY donde se observan las siguientes correlaciones: H-2',H-6'/H-3',H-5'.

La Figura 24 muestra el espectro de HMQC donde se observan las correlaciones siguientes: OMe-3/OMe-3; OMe-7/OMe-7; OMe-8/ OMe-8; C-6/H-6; C-3', C-5'/ H-3', H-5'; C-2', C-6'/H-2',H-6'.

El análisis de los espectros de RMN de 1D y 2D y la comparación de las constantes espectroscópicas con las previamente descritas por Bernhard y Thiele., 1981, permitieron concluir que el compuesto Lt5 es 5,4⁻-dihidroxi-3,7,8-trimetoxiflavona.

Figura 21 Espectro de RMN ¹H (400MHz, DMSO-d6) de 5,4'-dihidroxi-3,7,8-trimetoxiflavona (Lt5) 66

Figura 22. Espectro de RMN ¹³C (100 MHz, DMSO-d6) de 5,4'-dihidroxi-3,7,8-trimetoxiflavona (Lt5)

Figura 23. Espectro de COSY de 5,4'-dihidroxi-3,7,8-trimetoxiflavona (Lt5)

Figura 24. Espectro de HMQC de 5,4'-dihidroxi-3,7,8-trimetoxiflavona (Lt5)

4.1.1.6 Elucidación estructural de 5,4'-dihidroxi-7-metoxiflavona (Lt6)

La Figura 25 muestra el espectro de RMN ¹H del compuesto Lt6 donde se muestra un singulete de un metoxilo aromático a δ 3.87 (3H, s), dos dobletes de dos protones aromáticos meta relacionados uno a δ 6.38 (1H, d, J = 2 Hz, 6-H) y otro a δ 6.78 (1H, d, J = 2.4 Hz, H-8), un singulete de un protón olefínico a δ 6.86 (1H, s, H-3), dos dobletes de un sistema A₂B₂ de protones aromáticos orto relacionados a δ 6.93 (2H, d, J = 8.8 Hz, H -3′, H-5′) y δ 7.97 (2H, d, J = 8.8 Hz, H-2′, H-6′), un singulete de un protón de hidroxilo fenólico a δ 12.97 (OH-5) que esta quelatado con un grupo carbonilo de la posición 4.

La Figura 26 muestra el espectro RMN ¹³C donde se muestra las señales para 16 carbonos de los cuales 12 son carbonos aromáticos δ : 92.57 (C-8), 97.86 (C-6), 104.54 (C-4a), 115.86 (C-3', C-5'), 120.91 (C-1'), 128.47 (C-2', C-6'), 157.12 (C-5), 161.06 (C-8a), 161.21 (C-4'), y 165.01 (C-7). Dos carbonos de un heterociclo δ : 102.88 (C-3) y 163.95 (C-2); un carbonilo δ 181.84 (C-4) y un metoxilo aromático δ 55.94 (MeO-7).

La Figura 27 muestra el espectro de DEPT-90 donde se observan señales de 7 metinos CH-8, CH-6, CH-3, CH-3', CH-5', CH-2', CH-6' y un metilo de metoxilo unido al anillo aromático OCH₃.

La Figura 28 muestra el espectro COSY donde se observan las siguientes correlaciones: H-6/H-8; H-3',H-5'/H-2', H-6'.

La Figura 29 muestra el espectro de HMQC donde se observan las siguientes correlaciones δ : OCH₃-7/H-7; C-6/H-6; C-8/H-8; C-3/H-3; C-3', C-5'/H-3', H-5'; C-2', C-6'/H-2', /H-6'.

El análisis de los espectros de RMN de ID y 2D y la comparación de las constantes espectroscópicas con las previamente descritas en la literatura por Sakakibara et al., 1976 permitieron concluir que el compuesto Lt6 es la 5,4[']-dihidroxi-7-metoxiflavona.

Figura 25. Espectro de RMN ¹H (400 MHz, DMSO-d6) de 5,4'-dihidroxi-7-metoxiflavona (Lt6) 71

Figura 26. Espectro de RMN ¹³C (100 MHz, DMSO-d6) de 5,4'-dihidroxi-7-metoxiflavona (Lt6) 72

Figura 27. Espectro DEPT 90 de 5,4'-dihidroxi-7-metoxiflavona (Lt6)73

Figura 29. Espectro de HMQC de 5,4'-dihidroxi-7-metoxiflavona (Lt6)

4.1.1.7 Elucidación estructural de 5,7,4'-trihidroxi-3,8,3'-trimetoxiflavona (Lt6a)

La Figura 30 muestra el espectro de RMN ¹H del compuesto Lt6a donde se observan tres singuletes de tres metoxilos aromáticos a δ 3.807 (3H, s, CH₃O-3), δ 3.9 (3H, s, MeO-8) y δ 3.93 (3H, s; CH₃O-3'), después se observa un singulete de un protón aromático a δ 6.315 (1H, s, H-6), un doblete de un protón aromático acoplado en orto con un proton aromático a δ 6.990 (1H, d, J = 8.4 Hz, H-5'), un doble de doble de un protón aromático a δ 7.70 (1H, dd, J = 8.4 y 1.6 Hz, H-6') que esta acoplado en orto con otro proton aromático y en meta con otro proton aromático y un doblete de un protón aromático a coplado en meta con otro protón aromático a δ 7.73 (1H, d, J = 1.6, H-2').

La Figura 31 muestra el espectro de RMN ¹³C con las respectivas señales de 18 carbonos de los cuales 12 son aromáticos δ : 99.09 (C-6), 105.13 (C-4a), 111.33(C-2'), 115.34 (C-5'), 122.18 (C-1'), 122.74 (C-6'), 127.75 (C-8), 147.27 (C-3'), 149.21(C-4'), 156.65 (C-7). Dos carbonos heterocíclicos δ : 138.63 (C-3), 156.03(C-2) y tres metoxilos aromáticos δ 61.57 (OMe-3), δ 60.2 (OMe-8) y δ 55.5 (OMe-3').

El análisis de las constantes espectroscópicas de RMN de ¹H y ¹³C así como la comparación de las mismas con las previamente descritas en la literatura por Roitman et al., 1984 permitieron concluir que el compuesto Lt6a es la 5,7,4'-trihidroxi-3,8,3'-trimetoxiflavona.

Figura 30. Espectro de RMN ¹H (400 MHz, CDCl₃) de 5,7, 4'-trihidroxi-3,8,3'-trimetoxiflavona (Lt6a) 77

Figura 31. Espectro de RMN¹³C (100 MHz, CDCl₃) de 5,7,4'-trihidroxi-3,8,3'-trimetoxiflavona (Lt6a)⁷⁸

4.1.1.8 Elucidación estructural de 3,5,8,4'-trihidroxi-3,7-dimetoxiflavona (Lt3)

La Figura 32 muestra el espectro de RMN ¹H del compuesto Lt3 donde se observan dos singuletes de dos metoxilos a δ 3.78 (3H, s, CH₃O-3) y a δ 3.81 (3H, s, MeO-7), después se observa un singulete de un protón vinílico a δ 6.28 (1H, s, H-6), dos dobletes de dos grupos de protones aromáticos orto relacionados a δ 6.97 (2H, d, *J* = 8.9 Hz, H-3', H-5') y δ 7.95 (2H, d, *J* = 8.9 Hz, H-2', H-6') que conforman un sistema A₂B₂; dos singulete de protones de base hidroxilo en δ 10.29 (1H, s, 4'-OH) y 10.73 (1H, s, 8-OH) y finalmente un hidroxilo a δ 12.36 (1H, s, 5-OH) que esta quelatado con un grupo carbonilo de la posición 4.

La Figura 33 muestra el espectro de RMN ¹³C con las respectivas señales de 17 carbonos de los cuales 12 son aromáticos δ : 99.33 (C-6), 105.22 (C-8), 114.2 (C-4a), 116.03 (C-3',C-5'), 121.83 (C-4'), 128 (C-7), 130.92 (C-2'), 130.60 (C-6'), 149.27 (C-8a), 156.84 (C-1'), y 157.09 (C-5). Dos carbonos heterocíclicos δ : 138.63 (C-3), 160.40 (C-2); un carbonilo 179.23 (C-4) y dos metoxilos aromáticos δ : 60.26 (OMe-3), y 61.71 (OMe-7).

La Figura 34 muestra el espectro de HMQC donde se observan las siguientes correlaciones : OCH₃-3/ OCH₃-3; OCH₃-7/OCH₃-7; C-6/H-6; C-3',C-5'/H-3',H-5'; C-2', C-6'/H-2', H-6'.

El análisis de los espectros de RMN de 1D y 2D y la comparación de las constantes espectroscópicas con las previamente reportadas por Sakakibara et al., 1975, permitieron concluir que el compuesto Lt3 es la 3,5,8,4⁻-trihidroxi-3,7-dimetoxiflavona.

Figura 32. Espectro de RMN ¹H (400 MHz, DMSO-d6) de 5,8, 4'-trihidroxi-3,7-dimetoxiflavona (Lt3)

Figura 33. Espectro de RMN ¹³C (100 MHz, DMSO-d6) de 3 5,8, 4'-trihidroxi-3,7-dimetoxiflavona (Lt3) ⁸¹

Figura 34 Espectro de HMQC de 5,8, 4'-trihidroxi-3,7-dimetoxiflavona (Lt3)

En la tabla 7 se muestran las constantes espectroscópicas de los flavonoides obtenidos del extracto clorofórmico.

OBTENIDOS DEL EXTRACTO CLOROFORMICO										
	Lt2		Lt5		Lt3		Lt6		Lt6a	
No	$\delta^{1}H$	$\delta^{13}C$								
	(J=Hz)		(J = Hz)							
2		148.44		160.942		160.40		163.95		
3		146.40		138.543		138.63	6.860, s	102.88		
4		179.01		179.379		179.23		181.54		
4a		105.32		105.424		114.2		104.54		105.13
5		157.37		157.247		157.093		157.12		
6	6.35, s	95.42	6.59, s	95.66	6.28, s	99.33	6.38, s	97.86	6.31,s	99.09
7		159.35		129.28		128		165.01		156.65
8		128.79		97;		105.22	6.78, d,	92.54		127.75
				158.691			(2.4)			
8a		158.38		148.775		149.274		161.06		
1'		122.66		120.91		156.841		120.91		122.18
2'	7.71, d,	122.88	7.97, d	130.698	7.95,d,	130.92	7.96, d,	128.47	7.74,d,	111.33
	(2)		(8.7)		(8.9)		(8.8).		(1.6)	
3'		138.63	6.97, d	116.036	6.97,d,	116.03	6.93, d,	115.86		147.27
			(8.8)		(8.9)		(8.8)			
4'		155.73		121.731		127.83		161.21		149.21
5'	7.0, d	114.73	6.97, d	116.03	6.97,d,	116.03	6.93, d,	115.86	6.99,d,	115.34
	(8)		(8.8)		(8.9)		(8.8)		(8.4)	
6'	7.73, dd	110.79	7.97, d	130.698	7.95, d,	130.601	7.96 d,	128.47	7.7,dd,	122.74
	(8,2)		(8.7)		(8.9)		(8.8)		(8.4,1.6)	
OH-4	5.956, s									156.03
OH-5	12.40, s		12.50,s		12.36, s		12.50,s	116.21		138-66
OH-8					10.73, s					
OH-4'	6.0, s		10.37, s		10.29, s		10.37 ,s	121.73		
MeO-3	3.917, s	56.00	3.79, s	55.57	3.78, s	138.63;	3.87, s	55.94	3.807	61.57
107	2 070	56.00	2.07	c1.07	2.01	60.26				
MeO-/	3.879, s	56.39	3.85, s	61.85	3.81, s	128;				
M ₂ O 9	2 0 1 0 -	61 50	20 -	60.25		01./1			2 001	(0.2
MeO-8	5.848, S	01.38	3.9, S	00.25					0.901	00.2
MeO-3	5.785, s	60.16		1	1	1		1	3.933	56

TABLA 7 CONSTANTES ESPECTROSCÓPICAS DE LOS FLAVONOIDES OBTENIDOS DEL EXTRACTO CLOROFÓRMICO

4.1.2 Elucidación estructural de los compuestos aislados y purificados del extracto metanólico.

4.1.2.1 Elucidación estructural de 3-demetoxi-6-0 -demetilisoguaiacina (Lt8)

En el extracto clorofórmico se obtuvo el compuesto Lt8 y su elucidación estructural ya se discutió en el punto 4.1.1.3

4.1.2.2 Elucidación estructural de 5,4'-dihidroxi-3,6,7-trimetoxiflavona (Lt10)

La Figura 35 muestra el espectro de RMN ¹H del compuesto Lt10 donde se observan tres singuletes a δ 3.72 (3H, s, CH₃O-3), 3.65 (3H, s, CH₃O-6) y (3H, s, CH₃O-7) de tres metoxilos aromáticos, un singulete de un protón aromático que aparece a δ 6.49 (1H, s, H-8), dos dobletes de protones aromáticos orto relacionados a δ : 7.042 (2H, d, J = 8.8 Hz, H -3[′], H-5[′]) y 8.101 (2H, d, J = 9.2 Hz, H-2[′], H-6[′]) que conforman un sistema A₂B₂ y un singulete de un hidroxilo fenólico que aparece a δ 12.57 (1H, s, OH-5) que está quelatado con un grupo carbonilo de la posición 4. El hidroxilo en la posición 4 no aparece en el espectro porque se intercambio el proton con el deuterio del solvente.

En la Figura 36 se muestra el espectro de RMN ¹³C donde se muestra las señales para 18 carbonos de los cuales 12 son carbonos aromáticos δ : 95.37 (C-8), 131.79 (C-6), 104.95 (C-4a), 115.63 (C-3', C-5'), 121.87 (C-1'), 130.33 (C-2', C-6'), 156.02 (C-5), 148.33 (C-8a), 160.75 (C-4'), y 158.66 (C-7). Dos carbonos de un heterociclo δ : 130.138 (C-3) y 157.27 (C-2); un carbonilo δ 178.95 (C-4) y tres metoxilos aromáticos δ 60.60 (MeO-6), 59.28 (MeO-7), δ 55.97 (MeO-3).

El análisis de los espectros de RMN de ¹H y ¹³C y la comparación de sus constantes espectroscópicas con las descritas previamente por Bai et al., 2010, permitieron concluir que el compuesto Lt10 es la 5, 4'-dihidroxi-3,6,7-trimetoxiflavona.

Figura 35. Espectro de RMN ¹H (200 MHz, CD₃COCD₃) de 5, 4'-dihidroxi-3,6,7 trimetoxiflavona (Lt10) ⁸⁵

4.1.2.3 Elucidación estructural de 5, 7, 4'-trihidroxi-3-metoxiflavona (Lt15)

La Figura 37 muestra el espectro de RMN¹H del compuesto Lt15 donde se observó un singulete de un metoxilo aromático a δ 3.86 (3H,s CH₃O-3), dos dobletes de dos protones aromáticos meta-relacionados a δ : 6.25 (IH, d, J = 2.1 Hz, H-6) y 6.49 d (1H, d, J = 2.1 Hz, H-8), dos dobletes de protones aromáticos orto relacionados a δ : 7.01 (2H, d, J = 9.1 Hz, H -3′, H-5′) y 8.02 (2H, d, J = 9.1 Hz, H-2′, H-6′) que conforman un sistema A₂B₂, y un singulete de un hidroxilo a δ 12.8 (1H, s, C-5-OH) este último esta quelatado con el grupo carbonilo de la posición 4. Los grupos hidroxilos en 7 y 4′no aparecen en el espectro porque los hidrógenos de los hidroxilos se intercambiaron por deuterios del solvente.

La Figura 38 muestra el espectro de RMN ¹³C con las señales de 16 carbonos de los cuales 12 son aromáticos δ : 94.5 (C-8), 99.4 (C-6), 106.0 (C-4a), 116.5 (C-3',5'), 122.2 (C-1'), 131.2 (C-2',6'), 157.9 (C-8a), 160.8 (C-4'), 163.3 (C-5), 164. 6 (C-7). Dos carbonos del anillo heterocíclico a δ : 156.3 (C-2), 179.6 (C-3); un carbonilo δ 179.435 (C-4) y un metoxilo aromático 60.235 (OMe-3). Algunas señales no se observan por que el espectro se corrio a 50 MHz, estas señales son C-2, C-3, C-4a y C-8a, pero en el espectro de HMBC podemos observar estas señales.

La Figura 39 muestra el espectro de HMBC con las siguientes correlaciones OH-5/C-5,C-6,C-4a; H-2',H-6'/C-4',C-2,C2',C-6'; H-3',H-5'/C-3',C-5',C-4',C-1'; H-8/ C-7,C-8,C-6,C-4a; H-6/C-7,C-5,C-8,C-4a; MeO-3/C-3.

El análisis de los espectros de RMN de 1D y 2D y la comparación de las constantes espectroscópicas con las previamente reportadas por Sakakibara et al., 1975 permitieron concluir que el compuesto Lt15 es la 5,7,4'-trihidroxi-3-metoxiflavona.

Figura 37. Espectro de RMN ¹H (200 Mz, CD₃COCD₃) de 5,7, 4'-trihidroxi-3-metoxiflavona (Lt15)88

Figura 35. Espectro de RMN ¹³C (50 MHz, CD₃COCD₃) de 5, 7, 4'-trihidroxi-3-metoxiflavona (Lt15) 89

Figura 39. Espectro de HMQC (CD₃COCD₃) de 5,7, 4'-trihidroxi-3-metoxiflavona (Lt15)

TABLA 8

CONSTANTES ESPECTROSCÓPICAS DE LOS FLAVONOIDES OBTENIDOS DEL EXTRACTO METANÓLICO

	Lt10		Lt15		
No	δ^{1} H (<i>J</i> =Hz)	$\delta^{13}C$	δ^{1} H (<i>J</i> =Hz)	$\delta^{13}C$	
2		157.27		156.3	
3		138.138		139.50	
4		178.95		179.435	
4a		104.955		106.8	
5		156.026		163.3	
6		131.799	6.25,d, (2.1)	99.4	
7		158.66		164. 6	
8	6.49, s	95.372	6.49,d, (2.1)	94.5	
8a		148.33		157.9	
1'		121.879		122.20	
2'	8.101,d, (9.2)	130.33	8.02,d, (9.1)	131.2	
3'	δ7.042, d, (8.8)	115.63	7.01, d,(9.1)	116.5	
4'		160.175		160.8	
5'	δ7.042, d, (8.8)	115.63	7.01, d,(9.1)	116.5	
6'	8.101,d, (9.2)	130.33	8.02,d, (9.1)	131.2	
OH-4'					
OH-5	12.57, s		12.8,s		
OH-7					
OH-8	6.5, s				
MeO-3	3.7 <mark>2</mark> , s	55.97	3.86, s	60.235	
MeO-6	3.65, s	60.69			
MeO-7	3.5 5 , s	59.28			
4.2 Actividad antibacteriana y antituberculosa de los compuestos del extracto clorofórmico.

De los 8 compuestos obtenidos del extracto clorofórmico (Figura 40) fueron evaluados 7 compuestos en contra de 5 especies Gram-positivas, 7 especies Gram-negativas, una cepa sensible de *M. tuberculosis* H37Rv y tres aislados clínicos MFR de *M. tuberculosis* (Tabla 9). Solo se muestran los resultados donde los compuestos mostraron actividad antibacteriana y antituberculosa.

ácido dihidroguaiarético (Lt4)

(Lt2) 5,4'-dihidroxi-3,7,8,3'-tetrametoxiflavona $R_1 = OMe$ $R_2 = OMe$ $R_3 = OMe$ $R_4 = OMe$ (Lt3) 5,8,4'-trihidroxi-3,7-dimetoxiflavona $R_1 = OMe$ $R_2 = OH$ $R_3 = H$ $R_4 = OMe$ (Lt5) 5,4'-dihidroxi-3,7,8-trimetoxiflavona R1 = OMeR2 = OMe R3 = H $R_4 = OMe$ (Lt6) 5,4'-dihidroxi-7-metoxiflavona $R_1 = H$ $R_2 = H$ $R_3 = H$ $R_4 = OMe$ (Lt6a) 5,7,4'-trihidroxi-3,8,3'-trimetoxiflavona $R_1 = OMe$ $R_2 = OMe$ $R_3 = OMe$ $R_4 = OH$

Figura 40. Estructura química de los compuestos del extracto clorofórmico

TABLA 9

						Compues	stos			
Bacterias	ATCC			CMI (µg/mL)						
	/a.c.	Lt4	Lt7	Lt8	Lt2	Lt3	Lt5	Lt6	Lt6a	Lf
S. aureus	29213	>50	>50	25	>50	>50	>50	50	n.e	6.25
S. aureus RM	BAA- 44	50	>50	25	>50	>50	>50	>50	n.e	6.25
E. faecalis	29212	>50	>50	12.5	>50	>50	>50	50	n.e	0.78
E. coli	25922	>50	>50	50	>50	>50	>50	>50	n.e	0.78
E. cloacae	35030	>50	12.5	12.5	>50	>50:	>50	>50	n.e	0.78
	•		•			•				Iso
M. tuberculosis H37Rv	27294	50	50	>50	>50	>50	>50	>50	n.e	0.02
M. tuberculosis MFR	a.c.	n=3 12.5-50	n=1 25	n=2 12.5	n=1 25	n=3 25-50	>50	>50	n.e	4.0- 6.0

ACTIVIDAD ANTIBACTERIANA Y ANTITUBERCULOSA DE LOS COMPUESTOS DEL EXTRACTO CLOROFÓRMICO DE *L. tridentata*

Ácido dihidroguaiarético (Lt4), 4-epi-larreatricina (Lt7), 3´-demetoxi-6-O-demetilisoguaiacina (Lt8), 5,4´-dihidroxi-3,7,8,3´-tetrametoxiflavona (Lt2), 5,8,4´-trihidroxi-3,7-dimetoxiflavona (Lt3), 5,4´-dihidroxi-3,7,8-trimetoxiflavona (Lt5), 5,4´-dihidroxi-7-metoxiflavona (Lt6), 5,7,4´-trihidroxi-3,8,3´-trimetoxiflavon (Lt6a), n.e: no ensayado Lf: levofloxacina. Iso: isoniacida. CMI: Concentración Mínima Inhibitoria, a.c: aislado clínico.

Como se puede observar en la Tabla 9, de los lignanos evaluados, el lignano que presentó mejor actividad antibacteriana fue el 3´-demetoxi-6-O-demetilisoguaiacina (Lt8) ya que presentó actividad en contra de *S. aureus* sensible, *S. aureus* RM, *E. faecalis, E. coli* y *E. cloacae*, así como también fue activo en contra de dos aislados clínicos MFR de *M. tuberculosis*. El lignano ácido dihidroguaiarético (Lt4) mostró actividad en contra de *S. aureus* RM y en contra de la cepa sensible y tres aislados de *M tuberculosis*. La 4-epi-larreatricina (Lt7) solo mostró actividad en contra de *E. cloace* y en contra de la cepa sensible y un aislado clínico MFR de *M. tuberculosis*. El lignano Lt6a no se evaluó debido a que se obtuvo en pequeña cantidad.

En cuanto a los flavonoides evaluados se observa (Tabla 9) una actividad antibacteriana baja o en algunas ocasiones nula como en el flavonoide Lt5. La 5,4'dihidroxi-7-metoxiflavona (Lt6) mostró actividad en contra de *S. aureus* y *E. faecalis*. La 5,4'-dihidroxi-3,7,8,3'-tetrametoxiflavona (Lt2) y la 5,8,4'-trihidroxi-3,7dimetoxiflavona (Lt3) mostraron únicamente actividad antituberculosa en contra de uno y tres aislados clínicos MFR de *M. tuberculosis* MFR, respectivamente. El flavonoide Lt6a no se evaluó debido a que se obtuvo en poca cantidad. No se ha reportado en la literatura que tenga actividad antibacteriana.

La actividad antibacteriana y antituberculosa de los compuestos evaluados fue menor que la de los controles positivos levofloxacina e isoniacida, respectivamente. Las especies ATCC, como se puede observar en la Tabla 9, son más sensibles a la levofloxacina e isoniacida que a los compuestos aislados de *L. tridentata*. Por otro lado es muy probable que la levofloxacina e isoniacida actúen sobre las bacterias ensayadas con un mecanismo de acción diferente a los productos naturales evaluados en este estudio debido a que tienen estructuras químicas diferentes a los controles positivos empleados. Químicamente, los flavonoides son compuestos de bajo peso molecular que comparten un esqueleto común de difenilpiranos (C6-C3-C6), compuesto por dos anillos de fenilos ligados a través de un anillo de pirano heterocíclico, los lignanos puden ser del tipo dibencilbutano, furano-lignano ó 1-aryl tetralin lignano. La isoniacida es un ácido nicotínico hidrazida y la levofloxacina es una fluoroquinolona.

Como el lignano 3'-demetoxi-6-O-demetilisoguaiacina (Lt8) fue el fitocompuesto que presentó mayor espectro antibacteriano, se evaluó en contra de aislados clínicos bacterianos (ver Tabla 10).

TABLA 10

Aislados clínicos									
E. faecalis	CMI (µg/ml)	E. coli	CMI (µg/ml)	E. cloacae	CMI (µg/ml)	S. aureus	CMI (µg/ml)	S. aureus	CMI (µg/ml)
8736	25	8877	>50	9299	>50	9201	25	9199 RM	12.5
8561	25	8992	>50	9220	>50	8981	25	8997 RM	12.5
8345	12.5	9122	>50	9181	>50	8857	12.5	9200 RM	12.5
8562	50	8829	>50	8960	>50	9196 RM	12.5	8859 RM	12.5
8568	25	8827	>50	9234	>50	8927 RM	25	9105 RM	12.5
Lf	50	Lf	3.025	Lf	0.78	Lf 12.5	•	•	•

ACTIVIDAD ANTIBACTERIANA DE 3'-DEMETOXI-6-O-DEMETILISOGUAIACINA EN CONTRA DE AISLADOS CLÍNICOS.

Como se puede observar en la Tabla 10 el lignano 3'-demetoxi-6-Odemetilisoguaiacina mostró mejor actividad en contra de *E. faecalis* en comparación con el control positivo levofloxacina. Sin embargo, este lignano no mostró actividad en contra de *E. coli* y *E. cloacae* a las concentraciones ensayadas. 3'-Demetoxi-6-Odemetilisoguaiacina presentó actividad similar que la levofloxacina en contra de los aislados clínicos de *S. aureus* y *S. aureus* RM. Estos resultados son importantes por la alta prevalencia en hospitales de cepas de *S. aureus* resistentes a meticilina. Como se puede observar, *E. faecalis*, *S. aureus* y *S. aureus* RM son mas sensibles al 3'-demetoxi-6-O-demetilisoguaiacina que a la levofloxacina, mientras que *E. coli* y *E. cloacae* son menos sensibles al lignano ensayado que a la levofloxacina. Lo anterior se explica debido a las diferencias genotípicas y fenotípicas que existen en los aislados clínicos

Bocanegra-García y colaboradores en el 2009 (Bocanegra-García et al., 2009) publicaron que el extracto clorofórmico de *L. tridentata* mostró actividad en contra de *S. aureus* RM (CMI = 250 μ g/mL) y aislados clínicos (CMI = 12.5 - 100 μ g/mL, n=25) por lo que esta actividad se le puede atribuir al lignano 3'-demetoxi-6-Odemetilisoguaiacina. El extracto clorofórmico de *L. tridentata* no presentó actividad en contra de *E. faecalis* ATCC 29212 (CMI > 250 µg/mL) y sus aislados clínicos (CMI > 250 µg/mL n=15), sin embargo el lignano 3'-demetoxi-6-O-demetilisoguaiacina mostró actividad en contra de esta bacteria (CMI = 12.5 µg/mL; CMI = 12.5 - 50 µg/mL, n=5) y fue igual o más potente que el estándar levofloxacina. Lo anterior puede deberse a que el lignano estaba muy diluido en el extracto u otros componentes de la planta enmascararon su actividad. Por otro lado el lignano al estar puro actuó de una manera más precisa sobre la bacteria que cuando se encuentra en mezcla con otros componentes del extracto que pueden impedir que se una al sitio de acción sobre la bacteria.

Ninguno de los compuestos evaluados fue activo (CMI > 50 µg/mL) en contra de *A. baumanii* y *L. monocytogenes*. En contraste el extracto clorofórmico mostró débil actividad en contra de *A. baumanii* (CMI = 125 µg/mL) y *L. monocytogenes* (CMI = 125 µg/mL). Esto puede deberse a que los compuestos contenidos en el extracto actuaron en sinergismo para dar la actividad mostrada en el extracto o que los compuestos responsables de dicha actividad antibacteriana no se lograron aislar.

4.2.1 Actividad antibacteriana y antituberculosa de los compuestos del extracto metanólico.

En el extracto metanólico se aislaron 3 compuestos el lignano3´-demetoxi-6-Odemetilisoguaiacina (Lt8) y dos flavonoides 5,4'-dihidroxi-3,6,7--trimetoxiflavona (Lt10) y 5,7,4'-trihidroxi-3-metoxi flavona (Lt15) (Figura 41).

Figura 41. Estructura química de los compuestos obtenidos del extracto metanólico

A los compuestos antes mencionados se les determinó la actividad antibacteriana en contra de 5 especies Gram-positivas y 7 especies Gram-negativas, así como la actividad antituberculosa en contra de una cepa sensible H37Rv y 3 MFR de *M. tuberculosis.* Solo se muestra la CMI de los dos flavonoides obtenidos (Tabla 11) ya que la actividad biológica del lignano 3'-demetoxi-6-O-demetilisoguaiacina (Lt8) se encuentra en la Tabla 9.

TABLA 11.

Especies	ATCC		CMI (µg/ı	ml)
		Lt10	Lt15	Lf
S. aureus	29213	>50	50	6.25
S.aureus	BAA-	50	>50	6.25
RM	44			
L. monocytogenes	19111	>50	50	0.78
				Iso
M. tuberculosis	27294	>50	>50	0.02
H37Rv				
M. tuberculosis	a.c	>50	>50	4.0-
MFR	n=3			6.0

ACTIVIDAD ANTIBACTERIANA Y ANTITUBERCULOSA DE LOS COMPUESTOS DEL EXTRACTO METANÓLICO

5, 4'-dihidroxi-3,6,7-trimetoxiflavona (Lt10), 5,7,4'-trihidroxi-3 metoxiflavona (Lt15), Lf: levofloxacina. Iso: isoniacida. CMI: Concentración Mínima Inhibitoria.

Como se puede observar en Tabla 11, la 5,4'-dihidroxi-3,6,7-trimetoxiflavona (Lt10) solo mostró actividad en contra de *S. aureus* RM, mientras que 5,7,4'-trihidroxi-3 metoxiflavona (Lt 15) fue activo en contra de *S. aureus* y *L. monocytogenes*. Cabe mencionar que este último flavonoide posee actividad antiinflamatoria, inhibe el crecimiento tumoral, tiene efecto hepatoprotector y actividad en contra de *Tripanosoma cruzi* (Escobar., et al 2009). Aunque la actividad antibacteriana de Lt10 y Lt15 es modesta, cabe mencionar que esta actividad se debe a los hidroxilos fenólicos que contienen los compuestos, ya que estos grupos funcionales penetran fácilmente a través de la membrana celular bacteriana, se combina y precipitan las proteínas protoplasmáticas desnaturalizándolas y actuando como venenos protoplasmáticos. (Fuentes-Ruitón et al 1998).

Esta es la primera vez que se reporta la actividad antibacteriana para ambos flavonoides: 5,4'-dihidroxi-3,6,7-trimetoxiflavona (Lt10) y 5,7,4'-trihidroxi-3

metoxiflavona (Lt 15). Por otro lado, es importante mencionar que Lt10 se reporta por primera en *L. tridentata*, esta flavona se ha reportado en *Atemisia annua* que pertenece a la familia *Asteraceae* (Sy et al., 1998).

Bocanegra-Garcia y colaboradores reportaron en 2009 (Bocanegra-Garcia et al., 2009) que el extracto metanólico presentó actividad antibacteriana en contra de *S. aureus* y *S. aureus* RM con CMI de 250 µg/mL, en contra de cada bacteria así como en contra de *L. monocytogenes* (CMI = 125 µg/mL). Los resultados obtenidos comprueban que los principios activos del extracto metanólico se lograron obtener y estos fueron los dos flavonoides 5,4'-dihidroxi-3,6,7-trimetoxiflavona (Lt10) y 5,7,4'-trihidroxi-3-metoxiflavona (Lt15) y el lignano 3'-demetoxi-6-O-demetilisoguaiacina (Lt8) que mostraron actividad en contra de *S. aureus* y *L. monocytogenes*. Adicionalmente, el extracto metanólico presentó actividad en contra de *S. pneumoniae* (CMI = 250 µg/mL), *A. baumannii* (CMI = 125 µg/mL), *H. influenzae* (CMI = 125 µg/mL), *E. cloacae* (CMI = 125µg/mL) y ninguno de los compuestos obtenidos presentó actividad en contra de *S. pneumoniae*, *A. baumannii*, *H. influenzae*, *E. cloacae* y/o que los compuestos contenidos en el extracto metanólico con actividad en contra de *S. pneumoniae*.

Si comparamos la actividad biológica de los lignanos y flavonoides ensayados se pudo observar que los lignanos mostraron mejor actividad antibacteriana que los flavonoides. En el caso particular de los lignanos ensayados estos pertenecen a tres grupos diferentes de lignanos por lo que no se puede establecer una relación estructura química actividad biológica entre ellos mismos tomando como base un tipo estructural común, ya que el ácido dihidroguaiarético (Lt4) es un lignano de tipo dibencilbutano, la 4-epi-larreatricina (Lt7) es de tipo furano-lignano, y el 3´-demetoxi-6-O-demetilisoguaiacina (Lt8) es de tipo 1-aryl tetralin lignano. Sin embargo, con los resultados obtenidos en las Tablas 9 y 10 podemos observar que el compuesto más activo y con un amplio espectro antimicrobiano fue el 3'-demetoxi-6-O-demetilisoguaiacina (Lt8). Este compuesto posee tres grupos OH fenólicos. Los grupos

OH en compuestos polifenólicos como los lignanos están estrechamente relacionados con la acción antibacteriana, ya que se ha reportado que a mayor número de grupos OH en la molécula esta exhibirá mayor toxicidad al microorganismo eliminándolo mas fácilmente (Lai et al., 2004).

En el caso de todos los flavonoides aislados del extracto clorofórmico y metanólico poseen un esqueleto semejante ya que todos son flavonas. Dentro de los flavonoides que presentaron mejor actividad antibacteriana fueron la 5,4'-dihidro-7metoxiflavona (Lt6), que tiene dos grupos hidroxilo y un metoxilo, su actividad fue moderada así como el compuesto 5,7,4'-trihidroxi-3-metoxiflavona (Lt15) que es mas polar por poseer tres grupos hidroxilo y un metoxilo. Sin embargo la flavona 5, 4'dihidroxi-3,6,7-trimetoxiflavona (Lt10) que es mas polar que todos ya que posee cuatro grupos hidroxilos y un metoxilo, la actividad es modesta. Si comparamos estos flavonoides con los flavonoides que no presentaron actividad antimicrobiana el 5,4'dihidroxi-3,7,8,3'-tetrametoxiflavona (Lt2) y 5,4'-dihidroxi-3,7,8-trimetoxiflavona (Lt5) que poseen sólo dos grupos hidroxilo así como cuatro y tres metoxilo respectivamente podemos observar que al haber mayor cantidad de metoxilos le resta polaridad a los compuestos y les confiere mayor lipofilicidad y los hace menos activos frente a las bacterias. En conclusión esta relación estructura química actividad biológica sugiere que los grupos metoxilo disminuyen la actividad antibacteriana, mientras que los grupos hidroxilo la aumentan. Para explicar lo anterior se buscó en la literatura y se encontró que los compuestos fenólicos como lignanos, flavonoides, timol, eugenol tienen actividad antimicrobiana (250-100 µg/ml E. coli) y esto se debe a que los OH interaccionan con las proteínas de membrana y esto desestabiliza la pared celular de la bacteria ocasionando la muerte celular (Cushnie., et al 2011). No hay algún reporte que relacione los grupos metoxilo con algún componente celular.

4.3 Actividad citotóxica de los compuestos obtenidos de L. tridentata

La evaluación de la citotoxicidad se realizó en células hepáticas humanas de origen benigno (Células Chang) las cuales fueron expuestas a varios compuestos obtenidos de la planta *L. tridentata*, en este ensayo se determinó la viabilidad celular mediante la evaluación microscópica y con la prueba WST-1. En la tabla 12 se muestra la Concentración Inhibitoria 50 (CI50) para cada compuesto. Se utilizó el programa GraphPad Prim Software 5 para calcular las CI50.

TABLA 12

VALORES DE CITOTOXICIDAD (CI₅₀ µg/mL) DE ALGUNOS COMPUESTOS OBTENIDOS DE Larrea tridentata CON CÉLULAS CHANG

Compuesto	CI 50 (µg/mL)
Acido dihidroguaiaretico (Lt4)	10.68
3'-Demetoxi-6-O-dimetilisoguaiacina (Lt8)	31.10
4-Epi-larreatricina (Lt7)	34.40
5,4´-Dihidroxi-3,7,8,3´-tetrametoxiflavona (Lt2)	39.14
5,7,4´-Trihidroxi-3-metoxiflavona (Lt15)	39.85
5,4´-Dihidroxi-3,7,8-trimetoxiflavona (Lt5)	40.25
5,4´-dihidroxi-3,6,7-trimetoxiflavona (Lt10)	85.25

Como se puede observar en la Tabla 12 los tres lignanos evaluados fueron más citotóxicos que los cuatro flavonoides ensayados. El compuesto que presentó mayor citotoxicidad fue el lignano ácido dihidroguaiarético (Lt4) con un valor de CI₅₀ de 10.68 μ g/mL, seguido de 3'-demetoxi-6-O-dimetilisoguaiacina (Lt8) y epi-larreatricina (Lt7) con CI₅₀ de 31.10 y 34.40 μ g/mL, respectivamente. De los flavonoides ensayados los más tóxicos fueron 5,4'-dihidroxi-3,7,8,3'-tetrametoxiflavona (Lt2), 5,7,4'-trihidroxi-3-metoxiflavona (Lt15) y 5,4'-dihidroxi-3,7,8-trimetoxiflavona (Lt5) con CI₅₀ de 39.14, 39.85 y 40.25 μ g/mL, respectivamente. El flavonoide 5,4'-trihidroxi-3,6,7-metoxiflavona (Lt10) fue el compuesto menos citotóxico para las células Chang lo cual se pudo corroborar al visualizar los CI₅₀ de todos los compuestos, siendo el más alto para éste compuesto (CI₅₀ 85.25 μ g/mL). Por el grado de citotoxicidad que presentaron

los compuestos a la línea celular se buscó en la literatura y se encontró que los lignanos ensayados en este estudio han mostrado citotoxicidad en contra de células humanas cancerígenas. Lambert y colaboradores en el 2005 (Lambert et al., 2005) realizaron un estudio con líneas celulares humanas cancerígenas: Melanoma, (ACC375), Mama (MCF7) y Colon (SW480) con compuestos extraídos de L. tridentata. Los compuestos incluyeron la (S)-4',5-dihidroxi-7-metoxiflavonona, la cual presentó un IC₅₀ >80-60 µM en contra de las diferentes líneas celulares y lignanos del tipo dibencilbutano como el ácido dihidroguaiarético (Lt4), que mostraron un IC₅₀ 5-60 μ M, así como lignanos del tipo 1-aryl tetralin lignano como el 3'-demetoxi-6-O-demetilisoguaiacina (Lt8) que mostraron un IC₅₀ 9.6-50 µM. Los lignanos del tipo dibencilbutano resultaron ser los más potentes y en segundo lugar los del tipo 1-aryl tetralin lignano. Por otro lado, Salem y colaboradores en el 2005 reportaron que el lignano Nactandrin B con estructura tipo furano-lignano como la 4-epi-larreatricina (Lt7) mostró actividad antitumoral en contra de la línea celular cancerígena HL60 (IC₅₀ 100 µM). Otros estudios con flavonoides indican que han demostrado inhibir la proliferación celular en muchos tipos de líneas celulares cancerígenas humanas, y tienen poco o mucho efecto toxico a líneas celulares normales. Por ejemplo el efecto antiproliferativo de quercetina, taxifolina, nobiletina y tangeritina con la línea cancerígena escamosa (HTB43) ($IC_{50}2$ -8 µg/ml de 3-7 día) (Jen-Lui et al., 2006).

4.4 Resultados de la determinación del mecanismo de acción del principio antibacteriano más activo.

4.4.1 Curva de crecimiento de *S. aureus* RM a concentraciones variables del fitocompuesto.

Para el ensayo del posible mecanismo de acción se eligió el lignano 3-demetoxi-6-Odemetilisoguaiacina ya que presentó la mejor actividad antibacteriana sobre la cepa de *S. aureus* RM. Con esta curva de crecimiento se determinó el tiempo de exposición de la cepa de *S. aureus* RM a una concentración establecida del lignano.

Figura 42. Curva de crecimiento de *S. aureus* RM a concentraciones variables del fitocompuesto.

En la figura 42 se muestra la curva de crecimiento donde *S. aureus* RM se expuso a diferentes concentraciones del lignano3-demetoxi-6-O-demetilisoguaiacina (50, 25, 12.5 y 6.25μ g/mL), podemos observar que a 50, 25 y 12.5 μ g/mL hubo inhibición de crecimiento mientras que a 6.25μ g/mL hay menor crecimiento en comparación con el control que fue la bacteria creciendo en condiciones normales. Por lo que la CMI es de 12.5 μ g/ml y el tiempo de exposición es de una hora debido a que las cuatro primeras horas (1-4 hr) son de fase adaptación y la fase exponencial empieza una hora después (5-6 hr).

4.4.2 Extracción del ARN total

Posteriormente, con los resultados anteriores se procedió a preparar los cultivos bacterianos para la condición normal y la condición tratada como se describió en el punto 3.4.4., con los concentrados bacterianos obtenidos se procedió a realizar la

extracción y purificación del ARN total de ambas condiciones con el kit comercial RiboPure-Bacteria AM1925 de Ambion. Para observar la integridad del ARN total purificado de la condición normal y de la condición tratada y concluir que no están degradados se corrió una electroforesis en gel de agarosa (Figura 43).

Figura 43. Electroforesis en gel de agarosa. (A) Condición con tratamiento, (B) Condición sin tratamiento.

Como se puede observar en la Figura 43, las bandas de los ARN ribosomales 23S y 16S están íntegras lo que sugiere que el ARNm es de buena calidad para ambas condiciones. La concentración de ambas condiciones se obtuvo realizando una dilución 1:99 con agua DEPC las cuales se leyeron en un espectofotómetro a 260/280 nm el cual arroja automáticamente los resultados de concentración y absorbancia del RNA total. Los resultados son los siguientes: Absorbancia 260/280 nm (A): 1.63, (B):1.6 y concentración de (A): 9.6 µg/ml, (B): 10.6 µg/ml.

Posteriormente se llevó a cabo exitosamente la obtención del ARNm, síntesis de ADNc, marcaje con los fluroróforos, hidridación de ambas condiciones en el microarreglo y lavados como se describió previamente en el capítulo de materiales.

4.4.3 Lectura y cuantificación de microarreglo

Los genes encontrados se obtuvieron por lectura y cuantificación en microarreglo de *S. aureus* RM (30k) (ver Figura 44).

Figura 44. Imágenes del microarreglo (A) Cy3 (puntos rojos): condición sin tratamiento; (B) Cy5 (puntos verdes): condicion tratada; (C) Cy3/Cy5 (puntos rojos, verdes y amarillos): ambas condiciones (rojos y verdes) mas genes neutros (amarillos).

Como se puede observar en la figura 44, la lectura del microarreglo arrojó un grupo de genes sobreexpresados y otros inhibidos por la condición del tratamiento donde se observan puntos rojos gracias al fluoróforo Cy3 que representan genes encendidos en la condición sin tratamiento (es decir inhibidos por el tratamiento), puntos verdes por el fluoróforo Cy5 que representa la condición con tratamiento (es decir genes sobreexpresados por el tratamiento). Una vez que estas dos imágenes son adquiridas por el equipo se traslapan para dar lugar a una imagen combinada de Cy3/Cy5 que representa ambas condiciones con puntos verdes, rojos y amarillos (los verdes en esta tercera imagen representan a los que realmente se sobreexpresaron con el tratamiento sin neutralizarse con los rojos del no tratado y viceversa, mientras que los amarillos se consideran los neutros).

4.4.4 Análisis bioinformático

Se encontraron 153 genes sobre expresados y 93 genes reprimidos correspondientes al análisis del microarreglo sin embargo, al tomar en cuenta solo aquellos genes que estaban a +/- 1.5 Desviaciones Estándar (DS) del comportamiento promedio, respectivamente, se obtuvieron 122 genes sobre expresados y 84 genes reprimidos (Figura 45).

Figura 45. Zscore del microarreglo. (A) Zscore con todos los genes; (B)Zscore +/-1.5 DS

En la figura 45 se observan los genes sobre expresados y reprimidos a +/- 1.5 DS.

4.4.5 Génes sobreexpresados

En el análisis se detectaron 122 genes sobreexpresados que se asocian a diferentes procesos y funciones biológicas (Tabla 13).

TABLA 13

GÉNES SOBREEXPRESADOS

Gene Name	Gene type	Función
SAR2338	Xanthine/uracil permeases	Permeasa
SAR0025	Hypothetical protein	Proteoma completa
SAR0657	Ferrichrome transport ATP- binding protein	Actividad ATPasa
SAR0503	Putative peptidyl-tRNA hydrolase	Actividad carboxilesterasa
SAR1195	Putative protein phosphatase	Actividad catalítica
SAR2694	Putative anaerobic	Actividad catalítica
	ribonucleotide reductase	
SAR2224	Hypothetical protein	Actividad de transferasa
SAR1180	Putative orotidine 5'-	Actividad ortodina-5'-fosfato carboxilasa
	phosphate decarboxylase	
SAR2184	Putative exported protein	Actividad oxidoreductasa
SAR0234	L-lactate dehydrogenase 1	Actividad oxidoreductasa
SAR1031	Putative exported protein	ATP síntesis acoplado al transporte de
		electrones
SAR0248	Hypothetical protein	Biogénesis de la envoltura celular
SAR2510	Gamma-hemolysin	Citólisis
CADOOC	component C precursor	Cofester le coitée
SAR0896		Colactor de umon
SAR2317	50S ribosomal protein L30	
SAR2318	30S ribosomal protein S5	
SAR2320	50S ribosomal protein L6	
SAR2321	30S ribosomal protein S8	
SAR2323	50S ribosomal protein L5	
SAR2324	50S ribosomal protein L24	
SAR2325	50S ribosomal protein L14	
SAR2326	30S ribosomal protein S17	Constituyente estructural ribosomal
SAR2327	50S ribosomal protein L29	
SAR2331	30S ribosomal protein S19	
SAR2332	50S ribosomal protein L2	
SAR2333	50S ribosomal protein L23	
SAR2334	50S ribosomal protein L4	
SAR2800	50S ribosomal protein L34	
SAR0654	Hypothetical protein	
SAR1093	Hypothetical protein	Función desconocida
SAR0191	Hypothetical protein	
SAR1934	putative membrane protein	

Tabla 13 (Continución)

SAR1063	Conserved Hypothetical	Estructura ribosomal y biogénesis:
	protein	replicación, recombinación y reparación.
SAR1233	Elongation factor Ts	Elongación translacional
SAR2313	Translation initiation factor IF-1	Iniciación translacional
SAR0215	Putative sensor kinase protein	Mecanismo de transducción de señales.
SAR2541	Putative carboxylesterase	Metabolismo de lípidos, hidrolasa
SAR2302	Putative tRNA pseudouridine synthase	Modificación del ARN
SAR2620	Putative membrane protein	muerte celular, citólisis
SAR0279	conserved Hypothetical	
	protein	Patogénesis
SAR1917	Enterotoxin	
SAR2383	Putative exported protein	
SAR0530	Putative membrane protein	Predicción de función general
SAR0154	Capsular polysaccharide	Proceso biosintético
	synthesis enzyme	
SAR1042	Onithine	Proceso biosintético "de novo" IMP
	carbamoyltransferase	
SAR2711	Carbamate kinase	Proceso biosintético celular de aminoácidos
SAR2357	Putative molybdenum	Proceso biosintético del cofactor Mo-
G A DO 471	cofactor biosynthesis	libdopterina
SAR04/1	Hypothetical protein	Proceso biosintetico del glutamato
SAR1158	phospho-N-acetylmuramoyl- pentapeptide-transfera	Proceso biosintético del peptidoglicano
SAR0140	Deoxyribose-phosphate aldolase	Proceso catabólico deoxiribonucleótido
SAR1483	Glycerol-3-phosphate dehydrogenase [NAD(P)+]	Proceso catabólico glicerol-3-fosfato
SAR0135	Superoxide dismutase	
SAR0169	Cansular polysaccharide	
5/1(010)	synthesis enzyme	
SAR0218	Putative pyruvate formate-	Proceso Oxidación-reducción
	lyase activating	
SAR2484	Respiratory nitrate reductase	
	delta chain	
SAR0351	Acetyl-CoA acetyltransferase	Proceso metabólico
SAR0613	Alcohol dehydrogenase	Proceso metabólico
SAR1067	Conserved Hypothetical	Proceso metabólico
	protein	
SAR1070	Putative transposase	Proceso metabólico
SAR2191	ATP synthase beta chain	Proceso metabólico de ATP
SAR0192	Hypothetical protein	Proceso metabólico de carbohidratos

Tabla 13 (Continuación)

SAR2583	Putative gluconokinase	Proceso metabólico de carbohidratos
SAR2706A	Hypothetical protein	Proceso metabólico de la arginina
SAR0217	Formate acetyltransferase	Proceso metabólico de la glucosa
SAR1954	Putative glutamate-1- semialdehyde	Proceso metabólico de tetrapirrol
SAR0824	Putative malolacticenzyme	Proceso metabólico del malato
SAR2485	Nitrate reductase beta chain	proceso metabólico del nitrato
SAR1118	Sortase B	Proceso metabólico glicero-eter
SAR2085	Hypothetical phage protein	Procesos metabólicos de ADN
SAR0335	Putative luciferase-like monooxygenase	Producción de energía y conversión
SAR1060	Putative cell division protein	Producción de energía y conversión
SAR1844	Putative membrane protein	Proteína A Universal de Estrés
SAR1064	Conserved Hypothetical	Proteína conservada no caracterizada
SAR1125	protein Conserved Hypothetical protein	Proteína de familia no caracterizada
SAR1495	Putative lipoprotein	Proteína de funcion inespecífica
SAR1516	Hypothetical phage protein	Proteína de la capside de fago
SAR2179	Putative membrane protein	Proteína de localización
SAR1238	putative membrane protein	Proteólisis
SAR0031B	Hypothetical protein	
SAR0031B SAR0855	Hypothetical protein Hypothetical protein	
SAR0031B SAR0855 SAR1085	Hypothetical protein Hypothetical protein putative guanylate kinase	Proteoma, inespecífico
SAR0031B SAR0855 SAR1085 SAR1577	Hypothetical proteinHypothetical proteinputative guanylate kinaseHypothetical protein	Proteoma, inespecífico
SAR0031B SAR0855 SAR1085 SAR1577 SAR2239	Hypothetical proteinHypothetical proteinputative guanylate kinaseHypothetical proteinHypothetical protein	Proteoma, inespecífico
SAR0031B SAR0855 SAR1085 SAR1577 SAR2239 SAR2569	Hypothetical proteinHypothetical proteinputative guanylate kinaseHypothetical proteinHypothetical proteinHypothetical protein	Proteoma, inespecífico
SAR0031B SAR0855 SAR1085 SAR1577 SAR2239 SAR2569 SAR1650	Hypothetical proteinHypothetical proteinputative guanylate kinaseHypothetical proteinHypothetical proteinHypothetical proteinPutative exported protein	Proteoma, inespecífico Región de transmembrana
SAR0031B SAR0855 SAR1085 SAR1577 SAR2239 SAR2569 SAR1650 SAR1817	Hypothetical proteinHypothetical proteinputative guanylate kinaseHypothetical proteinHypothetical proteinHypothetical proteinPutative exported proteinPutative exported protein	Proteoma, inespecífico Región de transmembrana
SAR0031B SAR0855 SAR1085 SAR1577 SAR2239 SAR2569 SAR1650 SAR1650 SAR1817 SAR0822	Hypothetical proteinHypothetical proteinputative guanylate kinaseHypothetical proteinHypothetical proteinHypothetical proteinPutative exported proteinPutative exported proteinConserved hypotheticalprotein	Proteoma, inespecífico Región de transmembrana Regulación de espuración
SAR0031B SAR0855 SAR1085 SAR1577 SAR2239 SAR2569 SAR1650 SAR1650 SAR1817 SAR0822 SAR1963	Hypothetical proteinHypothetical proteinputative guanylate kinaseHypothetical proteinHypothetical proteinHypothetical proteinPutative exported proteinPutative exported proteinConserved hypotheticalproteinPutative regulatory protein	Proteoma, inespecífico Región de transmembrana Regulación de espuración Regulación de la Reparación del ADN
SAR0031B SAR0855 SAR1085 SAR1577 SAR2239 SAR2569 SAR1650 SAR1650 SAR1817 SAR0822 SAR1963 SAR1963 SAR1585	Hypothetical proteinHypothetical proteinputative guanylate kinaseHypothetical proteinHypothetical proteinHypothetical proteinPutative exported proteinPutative exported proteinConserved hypotheticalproteinPutative regulatory proteinMaltose operon	Proteoma, inespecífico Región de transmembrana Regulación de espuración Regulación de la Reparación del ADN Regulación de transcripción
SAR0031B SAR0855 SAR1085 SAR1577 SAR2239 SAR2569 SAR1650 SAR1650 SAR1817 SAR0822 SAR1963 SAR1585	Hypothetical proteinHypothetical proteinputative guanylate kinaseHypothetical proteinHypothetical proteinHypothetical proteinPutative exported proteinPutative exported proteinConserved hypotheticalproteinPutative regulatory proteinMaltose operontranscriptional repressor	Proteoma, inespecífico Región de transmembrana Regulación de espuración Regulación de la Reparación del ADN Regulación de transcripción
SAR0031B SAR0855 SAR1085 SAR1085 SAR1577 SAR2239 SAR2569 SAR1650 SAR1650 SAR1817 SAR0822 SAR1963 SAR1963 SAR1585	Hypothetical proteinHypothetical proteinputative guanylate kinaseHypothetical proteinHypothetical proteinHypothetical proteinPutative exported proteinPutative exported proteinConserved hypotheticalproteinPutative regulatory proteinMaltose operontranscriptional repressorHolliday junction DNAbelicase	Proteoma, inespecífico Región de transmembrana Regulación de espuración Regulación de la Reparación del ADN Regulación de transcripción
SAR0031B SAR0855 SAR1085 SAR1577 SAR2239 SAR2569 SAR1650 SAR1650 SAR1817 SAR0822 SAR1963 SAR1963 SAR1585 SAR1721 SAR1752	Hypothetical proteinHypothetical proteinputative guanylate kinaseHypothetical proteinHypothetical proteinHypothetical proteinPutative exported proteinPutative exported proteinConserved hypotheticalproteinPutative regulatory proteinMaltose operontranscriptional repressorHolliday junction DNAhelicaseGlutamyl-tRNA reductase	Proteoma, inespecífico Región de transmembrana Regulación de espuración Regulación de la Reparación del ADN Regulación de transcripción
SAR0031B SAR0855 SAR1085 SAR1085 SAR1577 SAR2239 SAR2569 SAR1650 SAR1650 SAR1650 SAR1817 SAR0822 SAR1963 SAR1963 SAR1752 SAR1752 SAR0785	Hypothetical proteinHypothetical proteinputative guanylate kinaseHypothetical proteinHypothetical proteinHypothetical proteinPutative exported proteinPutative exported proteinConserved hypotheticalproteinPutative regulatory proteinMaltose operontranscriptional repressorHolliday junction DNAhelicaseGlutamyl-tRNA reductaseRibonucleoside-diphosphate	Proteoma, inespecífico Región de transmembrana Regulación de espuración Regulación de la Reparación del ADN Regulación de transcripción Reparación del ADN
SAR0031B SAR0855 SAR1085 SAR1577 SAR2239 SAR2569 SAR1650 SAR1650 SAR1817 SAR0822 SAR1963 SAR1963 SAR1585 SAR1721 SAR1752 SAR0785	Hypothetical proteinHypothetical proteinputative guanylate kinaseHypothetical proteinHypothetical proteinHypothetical proteinPutative exported proteinPutative exported proteinConserved hypothetical proteinPutative regulatory proteinMaltose operon transcriptional repressorHolliday junction DNA helicaseGlutamyl-tRNA reductaseRibonucleoside-diphosphate reductase alpha	Proteoma, inespecífico Región de transmembrana Regulación de espuración Regulación de la Reparación del ADN Regulación de transcripción Reparación del ADN
SAR0031B SAR0855 SAR1085 SAR1085 SAR1085 SAR1085 SAR1577 SAR2239 SAR2569 SAR1650 SAR1650 SAR1650 SAR1650 SAR1650 SAR1650 SAR1817 SAR0822 SAR1963 SAR1585 SAR1721 SAR1752 SAR0785 SAR0698	Hypothetical proteinHypothetical proteinputative guanylate kinaseHypothetical proteinHypothetical proteinHypothetical proteinPutative exported proteinPutative exported proteinConserved hypotheticalproteinPutative regulatory proteinMaltose operontranscriptional repressorHolliday junction DNAhelicaseGlutamyl-tRNA reductaseRibonucleoside-diphosphatereductase alphaPutative transposase	Proteoma, inespecífico Región de transmembrana Regulación de espuración Regulación de la Reparación del ADN Regulación de transcripción Reparación del ADN
SAR0031B SAR0855 SAR1085 SAR1085 SAR1577 SAR2239 SAR2569 SAR1650 SAR1650 SAR1650 SAR1817 SAR0822 SAR1963 SAR1963 SAR1721 SAR1752 SAR1752 SAR0785 SAR0698 SAR0698 SAR0722	Hypothetical proteinHypothetical proteinputative guanylate kinaseHypothetical proteinHypothetical proteinHypothetical proteinPutative exported proteinPutative exported proteinConserved hypotheticalproteinPutative regulatory proteinMaltose operontranscriptional repressorHolliday junction DNAhelicaseGlutamyl-tRNA reductaseRibonucleoside-diphosphatereductase alphaPutative transposase	Proteoma, inespecífico Región de transmembrana Regulación de espuración Regulación de la Reparación del ADN Regulación de transcripción Reparación del ADN

SAR0033	Kanamycin nucleotidyltransferase	Responder al antibiotico kanamicina
SAR1784	Putative universal stress	Respuesta al estrés
SAR2190	ATP synthase epsilon chain	Síntesis de ATP acoplado con transportador de protón
SAR2151	Putative sigma factor sigB	
SAR1186	Conserved Hypothetical	Transaringián
SAR1253	Conserved Hypothetical	Transcripcion
SAR2309	DNA-directed RNA polymerase alpha chain	
SAR1567	Sensor kinase protein	Transducción de señal
SAR0550	30S ribosomal protein S12	
SAR2311	30S ribosomal protein S13	
SAR2316	50S ribosomal protein L15	Translación
SAR0615	Putative arginyl-tRNA synthetase	
SAR0732	Putative acetyltransferase	Translación, estructura ribosomal y biogénesis
SAR0917	Putative S1 RNA binding domain	Translación, estructura ribosomal y biogénesis
SAR2712	Arginine/ornithine antiporter	Transportador de aninoácidos
SAR2582	Putative gluconate permease	Transportador de gluconato
SAR0310	Putative nucleoside permease	Transportador de nucleótidos y metabolismo
SAR0114	Immunoglobulin G binding protein A precursor	Transportadores ABC
SAR0174	putative transport system permease	Transporte de iones inorgánicos y metabolismo
SAR1449	Amino acid permease	Transporte de aminoácidos
SAR1590	Putative peptidase	Transporte de aminoácidos y metabolismo
SAR2557	Conserved Hypothetical protein	Transporte de aminoácidos y metabolismo
SAR1032	Protein coding gene	Transporte de electrones mitocondrial
SAR1034	Hypothetical protein	Transporte de electrones mitocondrial
SAR0743	Putative sodium:sulfate symporter protein	Transporte de iones
SAR2356	Putative molybdopterin- guanine dinucleotide	Unión GTP

En la tabla 13 se observan todos los génes sobreexpresados que se pueden asociar a difererentes procesos y vías metabólicas en función de su tipo. Para ello se utilizó una herramienta bioinformática GenDB (<u>http://www.genedb.org</u>)

Los genes sobreexpresados se sometieron a la herramienta bioinformática " Data base for Annotation, Visualization and integrated Discovery (DAVID 6.7, <u>http://david.abcc.ncifcrf.gov/</u>). Esta herramienta con su base de datos relacionó varios genes con tres vías metabólicas: Piruvato (SAR0217, SAR0824, SAR0169), Propanoato (SAR0217, SAR0169) y Butanoato (SAR0217, SAR0169). Sin embargo con esta información no se ha podido sugerir un probable mecanismo de acción. Pero como podemos observar en la tabla anterior hay muchas proteínas interesantes que se involucran en procesos y funciones biológicas importantes de *S. aureus* RM.

4.4.6 Génes reprimidos

En el análisis se detectaron 84 genes sobreexpresados que se asocian a difererentes procesos y vías metabólicas en funciones biológicas.

TABLA 14

GÉNES REPRIMIDOS

GeneName	GeneType	Función
SAR0221	Hypothetical protein	
SAR0237	Hypothetical protein	
SAR0291	Putative membrane protein	
SAR0075A	Hypothetical protein	
SAR0372	Hypothetical protein	
SAR0396	Putative lipoprotein	
SAR0437	Putative exported protein	
SAR0571	Hypothetical protein	
SAR0846	Putative exported protein	
SAR0861	nitroreductase family protein	
SAR1533	Hypothetical phage protein	Proteoma, inespecífico
SAR1552	Hypothetical phage protein	
SAR2049	Hypothetical phage protein	
SAR2059	Hypothetical phage protein	
SAR2063	Hypothetical phage protein	
SAR1429	Putative membrane protein	
SAR1462	Putative exported protein	
SAR1336	Hypothetical protein	
SAR1909	Hypothetical protein	
SAR2729	Hypothetical protein	
	Putative inosine-uridine	
SAR2367	preferring nucleoside	
SAR0584	Hypothetical protein	
SAR2770	Hypothetical protein	
SAR1092	Putative membrane protein	
SAR1955	Putative membrane protein	
SAR0582	Hypothetical protein	
SAR1459	Hypothetical protein	Función desconocida
SAR1682	Hypothetical phage protein (pseudogene)	
SAR1914	Hypothetical protein	
SAR1906	Serine protease	

SAR2733	Preprotein translocase SecY subunit-like	
SAR0344	Putative Sec-independent	Proteína de transporte
51110511	protein translocase	r i i i i i i i i i i i i i i i i i i i
SAR1755	Trigger factor (prolyl	
	isomerase)	
SAR1599	Hypothetical phage protein	Proceso biosintético de lípidos
SAR1265	Putative pyruvate flavodoxin/ferredoxin	Proceso de Oxidación-reducción
SAR1268	Conserved Hypothetical	Proceso metabólico de ARNt
SAR1406	Aspartate semialdehyde dehydrogenase	Proceso biosintético de metionina
SAR1114	Conserved Hypothetical protein	Proceso citocinético
SAR1839	Putative polysaccharide biosynthesis protein	Proceso biosintético de polisacaridos
SAR1851	Riboflavin biosynthesis protein	Proceso biosintético de rivoflavina
SAR1894	Putative exported protein	Proceso biosintético de rivoflavina
SAR2645	putative glycosyl transferase	Proceso metabólico de terpenoides
SAR1776	Pyruvate kinase	Glicólisis
SAR2296	Conserved Hypothetical protein	Metabolismo de butanoato
SAR2506	Putative phosphoglycerate mutase	glicólisis
SAR0877	Conserved Hypothetical protein	Chaperonas
SAR0313	Putative ROK family protein	Transcripción
SAR0918	NADH:flavin oxidoreductase / NADH oxidase family	Cofactor de unión
SAR0937	putative membrane protein	Región transmembrana
SAR0978	Enoyl-[acyl-carrier-protein] reductase [NADH]	Actividad oxidoreductasa
SAR0988	UDP-N-acetylmuramoylalanyl- D-glutamate2,6-dia	División celular
SAR1282	Conserved Hypothetical protein	Unión de aminoácidos
SAR1377	ImpB/MucB/SamB family protein	Reparación de ADN
SAR1412	Diaminopimelate decarboxylase	Actividad catalítica
SAR1657	Chaperone protein	Plegamiento
SAR1659	heat-inducible transcription repressor	Regulación de transcripción

SAR1722	Holliday junction DNA helicase RuvA	Reparación de ADN
SAR1763	putative primosomal protein	Unión ATP
SAR1992	Glutamyl-tRNA amidotransferase subunit A	Translación
SAR1995	Putative lipoprotein	Lipoproteína
SAR2002	Hypothetical protein	Actividad inhbitoria enzimática
SAR2291	MerR family regulatory protein	Regulador transcripcional
SAR2447	Putative mannitol-1-phosphate 5-dehydrogenase	Mecanismos de transducción de señales/ transcripción
SAR2489	Nitrite reductase large subunit	Asimilación de nitrato
SAR2514	Putative 8-amino-7- oxononanoate synthase	Actividad transferasa
SAR2573	Putative lipoprotein	Lipoproteína
SAR2678	Putative ketopantoate reductase	Procesamiento de ARNt
SAR2221	Serine hydroxymethyltransferase	Proteólisis
SAR2772	pyrrolidone-carboxylate peptidase	
SAR2438	Transposase (fragment)	
SAR2267	FecCD transport family protein	
SAR1928	ABC transporter ATP-binding protein	Mecanismo de defensa
SAR0306	ABC transporter ATP-binding protein	
SAR0144	Putative ABC transport ATP- binding protein	
SAR1073	Putative ABC transport ATP- binding protein	
SAR0190	Glucose-specific PTS transporter protein, IIABC	Transporte de glucosa
SAR0591	Putative membrane protein	Transporte inorgánico de iones y metabolismo
SAR0618	Putative transport system lipoprotein	Transporte de iones de hierro
SAR2231	Putative mannose-6-phosphate isomerase	Transporte de carbohidratos y metabolismo
SAR0895	Putative activated D-alanine transport protein	Transportador de membrana
SAR2463	putative membrane protein	Transportador del tipo ABC-2

Los genes reprimidos se sometieron a la base de datos: Data base for Annotation, Visualization and integrated Discovery (DAVID 6.7, <u>http://david.abcc.ncifcrf.gov/</u>). Esta base de datos relacionó varios genes con sistema transportador ABC.

Los transportadores de membrana dependientes de ATP (ABC) son proteínas ampliamente distribuidas y conservadas evolutivamente que participan en procesos de transporte. Presentan como característica estructural el poseer dos unidades homólogas, cada una con seis segmentos transmembrana (TM) y un sitio de fijación a nucleótidos (NBD); las regiones TM fijan la proteína a la membrana. De forma fundamental se caracterizan por tener amplia especificidad de sustratos pudiendo transportar de forma activa compuestos de distinta naturaleza. Este transporte desde el interior hacia el exterior de una célula facilita la salida del fármaco así como la eliminación de las sustancias tóxicas derivadas del fármaco evadiendo así los efectos terapéuticos del mismo por lo que esta expulsión beneficia y protege las funciones celulares bacterianas (Álvarez et al., 2009).

Zechini y colaboradores reportaron (Zechini et al., 2008) que varias proteínas del sistema transportador ABC están asociadas a la fármacoresistencia. Por ejemplo la resistencia de *Staphylococcus aureus* RN4220 a vancomicina es debida a la proteína transportadora " msrA", *M. tuberculosis* es resistente a tetraciclinas por la proteína "DrrAB", *E. coli* es resistente a eritromicina por la proteína "MacAB-TolC"

El sistema transportador ABC de *S. aureues* esta conformado por 91 genes que expresan a las diferentes proteínas de este sistema. De estas 91 proteínas, 4 proteínas reprimieron su actividad debido al lignano. Estas proteínas son SAR0144 y SAR1073 que son proteínas transportadoras ABC de unión a ATP, SAR0618 sistema de transporte de lipoproteínas que se relaciona con el sistema sustrato unión proteína y SAR2267 que pertenece a la subfamilia de transporte de proteínas FecCD que se relaciona con el sistema de proteínas permeasas. Debido a que el lignano reprimió estas proteínas de *S. aureus* RM, la bacteria no pudo expulsar al ligano al exterior por lo que el lignano ejerció su actividad antibacteriana. Por todo lo anterior se puede sugerir que el posible mecanismo de acción recae a nivel de membrana probablemente afectando proteínas de tipo transportador ABC.

CAPÍTULO 5 CONCLUSIONES

El estudio fitoquímico del extracto clorofórmico permitió el aislamiento y caracterización de tres lignanos: ácido dihidroguaiarético (Lt4), 4-epi-larreatricina (Lt7), 3'-demetoxi-6-O-demetilisoguaiacina (Lt8), y cuatro flavonoides: 5,4'-dihidroxi-3,7,8,3'-tetrametoxiflavona (Lt2), 5,8,4'-trihidroxi-3,7-dimetoxiflavona (Lt3), 5,4'-dihidroxi-3,7,8-trimetoxiflavona (Lt5), 5,4'-dihidroxi-7-metoxiflavona (Lt6) y 5,7,4'-trihidroxi-3,8,3'-trimetoxiflavona (Lt6a)

El estudio fitoquímico del extracto metanólico permitió el aislamiento y caracterización de un lignano el 3'-demetoxi-6-O-demetilisoguaiacina (Lt8) el cuál se obtuvo previamente del extracto clorofórmico y dos flavonoides: 5,4'- dihidroxi-3,6,7-trimetoxiflavona (Lt10) y 5,7,4'-trihidroxi-3-metoxiflavona (Lt15).

Es la primera vez que se reporta en *L. tridentata* la presencia de 5,4'-dihidroxi-3,6,7-trimetoxiflavona (Lt10).

El compuesto más activo para ambos extractos el clorofórmico y el metanólico fue el lignano 3'-demetoxi-6-O-demetilisoguaiacina el cual fue activo en contra de *S. aureus* sensible, *S. aureus* RM, *E. faecalis*, *E. coli*, *E. cloacae* y *M. tuberculosis* MFR.

Los compuestos adicionales del extracto clorofórmico que contribuyeron con la actividad antibacteriana y antituberculosa fueron: el ácido dihidroguaiarético que fue activo en contra de *S. aureus* RM, *M. tuberculosis* H37Rv y *M. tuberculosis* MFR; la 4-epi-larreatricina que mostró actividad en contra de *E. cloacae, M. tuberculosis* H37Rv y *M. tuberculosis* MFR; la 5,4[′]-dihidroxi-7-metoxiflavona que fue activa en contra de *S. aureus, y E. faecalis*; la 5,4[′]-dihidroxi-3,7,8,3[′]-tetrametoxiflavona que fue activa en contra de *M. tuberculosis* MFR; y la 5,8,4[′]-trihidroxi-3,7-dimetoxiflavona fue activa en contra de *M. tuberculosis* MFR; y la 5,8,4[′]-trihidroxi-3,7-dimetoxiflavona fue

Los compuestos adicionales aislados del extracto metanólico que presentaron actividad antibacteriana y antituberculosa fueron: la 5,4'-dihidroxi-3,6,7-trimetoxiflavona (Lt10) que fue activa en contra de *S. aureus* RM y la 5,7,4'-trihidroxi-3-metoxiflavona (Lt 15) fue activa en contra de *S. aureus* y *L. monocytogenes*.

Es la primera vez que se reporta la actividad antibacteriana de 5,4'-dihidroxi-3,6,7-trimetoxiflavona (Lt10) y 5,7,4'-trihidroxi-3-metoxiflavona (Lt 15).

El lignano ácido dihidroguaiarético (Lt4) fue el más citotóxico para las células Chang.

El flavonoide 5,4'-trihidroxi-3,6,7-trimetoxiflavona (Lt10) fue el compuesto menos citotóxico para las células Chang.

El mecanismo de acción del lignano 3'-demetoxi-6-O-demetilisoguaiacina con un amplio espectro antibacteriano se podría deber a la inhibición del sistema transportador ABC que utiliza la bacteria como mecanismo de resistencia, este mecanismo no es presentado por ninguno de los antibióticos usados actualmente.

CAPITULO 6 PERSPECTIVAS

Realizar PCR en tiempo real para confirmarar los resultados obtenidos de microarreglos.

Preparar análogos semi-sintéticos del lignano 3'-demetoxi-6-Odemetilisoguaiacina que presentó un amplio espectro antibacteriano para encontrar derivados con mayor actividad antibacteriana y antituberculosa.

CAPITULO 7

REFERENCIAS

1. Olshansky, S.j., Olshansky, S.J., Carnes, B., Rogers, R.G., Smith, L. Infectious diseases - new and ancient threats to world health. Popul Bull. 52(2): 1-52. (1997).

2. Estrategia de la OMS sobre medicina tradicional 2002-2005, OMS. Ginebra. WHO/EDM/TRM/200.1. (2002-2005).

3. Mandell, G.L., Bennet, J.E., Dolin. Enfermedades infecciosas: Principios y práctica. kaPrimer volumen. 6ta. Edición. Editorial Elsevier. Madrid, España pp: 198-210 (2006).

4. Nelson, K., Williams, C., Graham N. Epidemiología de las enfermedades infecciosas: Teoria y práctica. 1 era edición. Aspen Publishers, Inc. Gaithersburg, EUA pp: 25-30 (2000).

5. Secretaria de Salud. Boletín: Vigilancia epidemiológica de las infecciones respiratorias Agudas. (2011)

6. Del toro, M, D., Rodriguez-Bano, J., Martínez-Martínez, L., Pacual, A., Perez-Canoa, R., Perea, E, J., Muniain, M, A. Epidemiology, clinical Features and porgnosis of infections due to Stenotrophonomas maltophilia. Enferm Infecc Microbiol Clin 24:4-9. (2006).

7. Kuo, L,C., Lai, C, C., Liao, C, H., Hsu, C,K., Chang. Y, L., Chang, C, Y., Hsueh, P, R. Multidrug-resistant Acinetobacter baumannii bacteraemia: clinical features, antimicrobial therapy and outcome. Clin Microbiol Infect.;13(2):196-8. (2007).

8. Grupper, M., Sprecher, H., Mashiach, T., Finkelstein, R. Attributable mortality of nosocomial Acinetobacter bacteremia. Infect Control Hosp Epidemiol ;28(3):293-8. (2007).

9. Obritsch, M, D., Fish, D, N., MacLaren, R., Jung, R. Nosocomial infections due to multidrugresistant Pseudomonas aeruginosa: epidemiology and treatment options. Pharmacotherapy;25(10):1353-64. (2005).

10. Driscoll, J, A., Brody, S, L., Kollef, M, H. The epidemiology, pathogenesis and treatment of Pseudomonas aeruginosa infections. Drugs;67(3):351-68. (2007).

11. Ferrara, A, M. Treatment of hospital-acquired pneumonia caused by methicillin-resistant Staphylococcus aureus. Int J Antimicrob Agents;30(1):19-24. (2007).

12. Berger-Bächi, B. Resistance mechanisms of gram-positive bacteria. Int J Med Microbiol;292(1):27-35. (2002).

13. Brunton, L. B., Lazo, J, S., Parker, K, L. Goodman y Gilman. Las bases de la farmacología de la terapéutica. McGraw-Hill – Interamericana. Edición11. p.p 1095, 1111-1123, 1127-1151, 1155-1168, 1173-1193. México. (2007).

14. Organización Mundial de la Salud: Control mundial de la tuberculosis – Informe OMS 2011. (2011).

15. Harman, Joel, G., Limbird, Lee, E., Molinoff-Perry, B., Ruddon-Raymond, W., Goodman-Gilman, A. The Pharmacological basis of the therapeutics. 1McGraw-Hill – Interamericana.11. p.p 1225-1238. U.SA. (2001).

16. Cayman chemical company. WST-1 Cell Proliferation Assay Kit. Catalog No. 10008883. Ann Arbor, USA. (2007)

17. Arencibia-Arrebola, D.F., Rosario-Fernadez, L.F., Dayisell Lazara Curveco- Sánchez, D.L. Principales ensayos para determinar la citotoxicidad de una sustancia, algunas consideraciones y su utilidad. Retel: 1:40-52. (2003).

18. Torres, R. Propiedades antivirales de compuestos naturales y semisintético de la resina de Heliotropium filifolium. *Boletín de la Sociedad Chilena de Química*; 47 (3). (2003).

19. Chavan, P., Joshi, K., Patwardhan. DNA Microarrays in Herbal Drug Research. eCAM; 3(4)447-457. (2006).

20. Alan W.-C.Liew, HongYan Mengsu, Y.-P. Phoebe-Chen. Bioinformatics Technologies. Microarray Data Análisis. Springer Berlin Heidelberg. p.p 353. cap 13. ISBN 978-3-540-20873-0. (2005).

21. Organización Mundial de la Salud. Prevención de las infeccicones nosocomiales. guía práctica. 2 ed. (2003).

22. Sostarich, A, M., Zolldann, D., Haefner, H., Luetticken, R., Schulze-Roebecke, R., Lemmen, S, W. Infection; 36: 31–35. (2008).

23. Garcia-Alvarado, E., César Pérez., V. Medidas de bioseguridad, -precaucionesestándar y sistemas de aislamiento. Rev Enferm IMSS ; 10(1):27-30. (2002).

24. Nascimento-Gislene, G, F., Locatelli, J.; Freitas, P, C., Silva, G, L. Antibacterial activity of plant extracts and phytochemicals on antibioticresistant bacteria. Brazilian Journal of Microbiology 31:247-256. (2000).

25. Argueta, V,A., Cano, A., Rodarte, M. Atlas de las plantas medicinales de la medicina tradicional mexicana. Tomo I-III. Instituto Nacional Indigenista. p.p 669-670. México DF (1994).

26. Martínez M: Las plantas medicinales de México. 1st edition. Botas, México DF. (1989).

27. González Ferrara M. Plantas Medicinales del Noreste de México. IMSS: Monterrey México. (1998).

28. Giamerellow, H. Treatment options for multidrug-resistant bacteria. Expert Rev Anti Infect Ther;4:601-618. (2006).

29. O'Donnell, G., Poeschl, R., Zimhony, O., Gunaratnam, M., Moreira, J.B., Neidle, S, Evangelopoulos, D., Bhakta, S., Malkinson, J.P., Boshoff, H.I., Lenaerts, A., Gibbons, S. Bioactive pyridine-N-oxide disulfides from Allium stipitatum. J Nat Prod.27;72(3):360-5. (2009).

30. Ross, I, A. Medicinal Plants of the World: Chemical Constituents, Traditional and Modern Medicinal Uses. Humana Press.V3. p.p 263-270 Totowa, New Jersey. ISBN: 1-59259-887-0. (2005).

31. Rzedowsky, J., Huerta, M., Xerophilous heath. The Mexican Vegetation. Limusa. V1. pp 237–261 Mexico. (1994)

32. Ruiz-Martinez, J.; Ascacio, J. A.; Rodriguez, R.; Morales, D.; Aguilar, C. N. Phytochemical screening of extracts from some Mexican plants used in traditional medicine. J. Med. Plant. Res. 5(13):2791-2797. (2011).

33. Salinas-Salazar, C,L., Del Rayo Camacho-Corona, M., Bernès, S., Waksman de Torres N. 2,2'-Dimethoxy-4,4'-[rel-(2R,3S)-2,3-di-methylbutane-1,4-diyl]diphenol. Acta Crystallogr Sect E Struct. 14;65(Pt 6):279. (2009).

34. Lü, J,M., Nurko, J., Weakley, S,M., Jiang, J., Kougias, P., Lin, P,H., Yao, Q., Chen, C. Molecular mechanisms and clinical applications of nordihydroguaiaretic acid (NDGA) and its derivatives: an update. Med Sci Monit.16(5):93-100. (2010).

35. Zamora, J, M., Mora, E, C. Cytotoxic, antimicrobial and phytochemical properties of *Larrea tridentate* Cav. Diss Abstr Int B; 45(12): 3809–3810. (1985).

36. Segura, J. J. Effects of nordihydroguaiaretic acid and ethanol on the growth of *Entamoeba invadens*. Arch Invest Med (Mex); 1: 157–162. (1978).

37. Navarro, V., Villarreal, M, L., Rojas, G., Lozoy, X. Antimicrobial evaluation of some plants used in Mexican traditional medicine for the treatment of infectious diseases. J Ethnopharmacol; 53(3): 143–147. (1996).

38. Abbott, B,J., Leiter, J., Hartwell, J,L., Perdue, R,E Jr., Schepartz, S, A. Screening data from the cancer chemotherapy National Service Center Screening Laboratories. XXXIV. Plant extracts. Cancer Res; 26: 761–935. (1966).

39. Gnabre, J., Huang, R,C,C., Bates, R, B, Burns, J, J., Caldera ,S., Malcomson, M,.E., McClure, K,J. Characterization of anti-HIV lignans from *Larrea tridentata*. Tetrahedron; 51(45): 12203–12210. (1995).

40. Gnabre, J,N., Ito, Y., Ying, M.; Ru, C, H. Isolation of anti-HIV-1 lignans from *Larrea tridentata* by counter-current chromatography. J Chromatogr A; 719(2): 353–364. (1996).

41. Luo, Z., Meksuriyen, D., Erdelmeier, C, A, J., Fong, H, H, S., Cordell, G, A. Larreantin, a novel, cytotoxic naphthoquinone from *Larrea tridentata*. J Org Chem; 53(10): 2183–2185. (1988).

42. Lambert, J, D., Zhao, D., Meyers, R, O., Kuester, R, K., Timmermann, B, N., and Dorr, R, T. Nordihydroguaiaretic acid: hepatotoxicity and detoxification in the mouse. Toxicon; 40(12):1701–1708. (2002).

43. Lambert, J, D., Sang, S, M., Dougherty, A., Caldwell, C, G., Meyers, R, O., Dorr, R, T., Timmermann, B, N. Cytotoxic lignans from *Larrea tridentata*. Phytochemistry; 66(7):811-5. (2005).

44. Jacobson, M. Insecticides from plants. A review of the literature, 1941-1953. Agr Handbook No.154, USDA:299 pp. (1958).

45. Arteaga, S., Carmona, A., Luis, J., Andrade-Cetto, A., Cárdenas, R. Effect of Larrea tridentata (creosote bush) on cholesterol gallstones and bile secretion in hamsters. J Pharm Pharmacol; 57(9): 1093-9. (2005).

46. Saldivar, R, H, L.; Suarez, M, H. Natural compounds having antimicrobial activity for preventing and controlling infectious diseases in humans and food. Mex. Pat. Appl. MX 2006NL00057 A 20081009. (2008).

47. Bennett, E, L., Nbonner, J. Isolation of plant growth inhibitors from *Thamnosma montana*. Amer J Bot; 40: 29. (1953).

48. Mazzio EA, Soliman KF. In vitro screening for the tumoricidal properties of international medicinal herbs. Phytother Res. 23(3):385-98. (2009).

49. Garcia, C, L.; Martinez, A,R.; Ortega, J, L, S.; Castro, F, B. Chemical components and their relation with biological activities of some plant extracts . QuímicaViva. 2(9). (2010).

50. Katz, M., Saibil, F. Herbal hepatitis: Subacute hepatitis necrosis secondary to Chaparral leaf. J Clin Gastroenterol; 12(2): 203–206. (1990).

51. Verástegui, M, A., Sánchez, C, A., Heredia, N, L., García-Alvarado, J, S. Antimicrobial activity of extracts of three major plants from the Chihuahuan desert. J Ethnopharmacol. 5;52(3):175-7. (1996).

52. Dentali, S, J., Hoffmann, J, J.Potential anti-infective agents from Eriodictyon angustifolium and Salvia apiana. Int J Pharmacog;30(3): 223–231. (1992).

53. Tequida-Meneses, M., Cortez-Rocha, M., Rosas-Burgos, E, E., Lopez-Sandoval, S., Corrales-Maldonado C.Effect of alcoholic extracts of wild plants on the inhibition of growth of *spergillus flavus, Aspergillus niger, Penicillium chrysogenum, Penicillium expansum, Fusarium moniliforme* and *Fusarium poae* moulds. Rev Iberoam Microl; 19(2): 84–88. (2002).

54. Mangione, A, M., Dearing, D., Karasow, W. Detoxification in relation to toxin tolerance in desert woodrats eating creosote bush. J Chem Ecol;27(12): 559–2578.(2001).

55. Smith, B, C., Desmond, P, V. Acute hepatitis induced by ingestion of the herbal medication Chaparral. Aust N Z J Med; 23(5): 526. (1993).

56. Gordon, D,W., Rosenthal, G., Hart, J., Sirota, R., Baker, A, L.The broadening spectrum of liver injury caused by herbal medication. JAMA;273(5): 489–501. (1995).

57. Anon. From the Food and Drug Administration. Public Warning about herbal product "Chaparral". J Amer Med Ass; 269(3): 328. (1993).

58. Sheikh, N. M., Philen, R, M., Love L, A. Chaparral-associated hepatotoxicity. Arch Inter Med;157(8):813–919. (1997).

59. Koff, R, S. Herbal hepatotoxicity revisiting a dangerous alternative. JAMA; 273(5): 502. (1995).

60. Clark, F., Reed, D, R. Chaparralinduced toxic hepatitis. California and Texas, 1992. MMWR Morbid Mortal Wkly Rep; 41(43): 812–814. (1992).

61. Heosn, S., Yarnell, E. The safety of low-dose *Larrea tridentata* (DC) Coville (creosote bush or chaparral): A retrospective clinical study. J Alt Complement Med; 7(2):175–185. (2001).

62. Granados, H., Cardenas, R. Biliary calculi in the golden hamster. XXXVII. The prophylactic action of the creosote bush (*Larrea tridentata*) in pigmented cholelithiasis produced by vitamin A. Rev Gastroenterol Mex; 59(1):31–35. (1994).

63. Bocanegra-García, V., Del Rayo, Camacho-Corona, M., Ramírez-Cabrera, M., Rivera G, Garza-González, E. The bioactivity of plant extracts against representative bacterial pathogens of the lower respiratory tract. BMC Res Notes. 1;2:95. (2009).

64. Camacho-Corona M, del R., Ramírez-Cabrera, M,A., Santiago, O, G., Garza-González E., Palacios, Luna-Herrera, I, de P, J. Activity against drug resistant-tuberculosis strains of plants used in Mexican traditional medicine to treat tuberculosis and other respiratory diseases. *Phytother Res*, 22:82-85. (2008).

65. Gonzales, M., Bowden, G, T. Nordihydroguaiaretic acid-mediated inhibition of ultraviolet Binduced activator protein-1 activation in human keratinocytes. Mol Carcin;34(2): 102–111. (2002).

66. Arteaga, S., Andrade-Cetto, A., Cárdenas, R. Larrea tridentata (Creosote bush), an abundant plant of Mexican and US-American deserts and its metabolite nordihydroguaiaretic acid. J Ethnopharmacol:26; 98(3): 231-9. (2005).

67. Abou-Gazar, H., Bedir, E., Takamatsu, S., Ferreira, D., Khan, I,A. Antioxidant lignans from Larrea tridentata. Phytochemistry;65(17):2499-505. (2004).

68. Konno, C., Hui-Zhong, X., Zhi-Zhen, L., Bao-Xia, M., Clemens A, J, E., Chun-Tao, C., Cordell, G, A., Soejarto, D, D., Waller, D, P., Fong H, H, S. J. 1-Aryl Tetralin Lignans from Larrea tridentata. *Nat. Prod*;52(5), pp 1113–1117. (1989).

69. Yokosuka A, Matsuo Y, Jitsuno M, Adachi K, Mimaki Y. Larrealignans A and B, novel lignan glycosides from the aerial parts of Larrea tridentata. Chem Pharm Bull. 59(12):1467-70. (2011).

70. Sakakibara, M., Mabry, T, J. A new 8-hydroxyflavonol from *Larrea tridentata*. Phytochemistry; 14:2097–2098. (1975).

71. Sakakibara, M., Mabry, T, J., Bouillant, M, L., Chopin, J. 6,8-Di Cglucosylflavones from *Larrea tridentate (Zygophyllaceae)*. Phytochemistry; 16: 1113–1114. (1977).

72. Bernhard, H, O., Thiele, K. Additional flavonoids from the leaves of *Larrea tridentata*. Planta Med; 41: 100–103. (1981).

73. Bohnstedt, C, F., Mabry, T, J. The volatile constituents of the genus *Larrea* (*Zygophyllaceae*). Rev Latinoamer Quim; 10: 128–131. (1979).

74. Jardine, K., Abrell, L., Kurc, S. A., Huxman, T., Ortega, J., Guenther, A. Atmos. Chem. Phys.10, 12191–12206. (2010).

75. Xue, H, Z., Lu, Z, Z., Konno, C. et al. 3-Beta-(3,4-dihydroxycinnamoyl) erythrodiol and 3-beta-(-4-hydroxycinnamoyl) erythrodiol from *Larrea tridentata*. Phytochemistry;27(1): 233–235. (1988).

76. Smati, D., Longeon, A., Guyot, M. 3 Beta-(3,4-dihydroxycinnamoyl)-erythrodiol, a cytotoxic constituent of Zygophyllum geslini collected in the Algerian Sahara. J Ethnopharmacol. 95(2-3):405-7. (2004).

77. Jitsuno, M., Mimaki, Y. Triterpene glycosides from the aerial parts of Larrea tridentata. Phytochemistry. 71(17-18):2157-67. (2010).

78. Vargas-Arispuro, I., Reyes-Báez, R., Rivera-Castañeda, G., Martínez-Téllez, M, A., Rivero-Espejel, I. Antifungal lignans from the creosotebush (*Larrea tridentata*). Industrial Crops and Products 22) 101–107. (2005).

79. Vargas-Arispuro, I., Contreras-Valenzuela, A., Martínez-Téllez, M, A. Lignans from Larrea tridentate (creosote bush) as fungal b-1,3-glucanase inhibitors. Pesticide Biochemistry and Physiology; 94: 60–63. (2009).

80. Zgoda, J,R., Porter, J, R, A convenient microdilution method for screening natural products against bacteria and fungi, Pharm Biol; 39: 221-225. (2001).

81. Francoeur, A.M., Assalian, A. Microcat: A novel cell proliferation and cytotoxicity assay based on WST-1. Biochemica. 3, 1925. (1996)

82. K.onno, C., Zhi-Zhen, L., Hui-Zhong, X., Clemens, A, J, E., Meksuriyen, D., Chun-Tao, C., Cordell, G,A., Soejarto, D, D., Waller, D, P., Fong, H, H, S. Furanoid Lignans from Larrea tridentata. *J. Nat. Prod;* 53 (2), pp 396–406. (1990).

83. Roitman, J. N., Jame, L. F. Chemistry of toxic range plants. Highly oxygenated flavonol methyl ethers from *Gutierrezza mzcrocephala*. Phytochemistry. 24 (4): 835-838. (1985).

84. Escobar, Z., Flores, Y., Tejeda, L., Alvarado, J.A., Sterner, O., Almanza, G.R. Phenolic compounds from *baccharis papillosa subsp. Papillosa*. Revista boliviana de química. 26(82):117-117. (2009).

85. Bai, N.; He, K.; Zhou, Z.; Lai, C.S.; Zhang, L.; Quan, Z.; Shao, X.; Pan, M.H.; Ho, C.T. Flavonoids from *Rabdosia rubescens* exert anti-inflammatory and growth inhibitory effect against human leukemia HL-60 cells. Food Chem. 122, 831-835. (2010).

86. Ulubelen, A., Kerr, K.M., Mabry, J.T. New 6-hydroxyflavonoids and their methyl ethers and glycosides from *Neurolaena oaxacana*. Phytihemistry. 9, 1761-1766. (1980).

87. Konno, C., H. Z. Xue, Z. Z. Lu, et al. 1- ARYL tetralin lignans from *Larrea tridentata*. J Nat Prod; 52(5):1113–1117. (1989).

88. Martini, N,D., Katerere, D,R., Eloff, J,N. Biological activity of five antibacterial flavonoids from Combretum erythrophyllum (Combretaceae). J Ethnopharmacol; 93: 207-12. (2004).

89. Bocanegra-García, V., Del Rayo, Camacho-Corona, M., Ramírez-Cabrera, M., Rivera G, Garza-González, E. The bioactivity of plant extracts against representative bacterial pathogens of the lower respiratory tract. BMC Res Notes. 1; 2:95. (2009).

90. Kawaguchi, Y., Yamamuchi, S., Masuda, K. Antimicrobial activity of stereoisomers of butane-type lignans. Bioci Biotechnol Biochem, 73:1806-1810. (2009).

91. Cushnie, T.P.T., Lamb, A.J. Recent advances in understanding the antibacterial properties of flavonoids. International Journal of Antimicrobial Agents. 38:99–107. (2011).

92. Álvarez de Felipe, A., Pulido- Duarte, M., Transportadores de tipo ABC: consecuencias de su interacción con Flavonoides. Bol Latinoam Caribe Plant Med Aromaticas.7 (6):296-311. (2008).

93. Zechini, B., Versace, I. Inhibitors of multidrug resistant efflux systems in bacteria. Recent Pat Antiinfect Drug Discov. 4(1):37-50. 2009.

APÉNDICE A

DIFRACCIÓN DE RAYOS X EN MONOCRISTAL DEL COMPUESTO 4 EPI LARREATRICINA LT7 Table 1. Crystal data and structure refinement for LT_7.

Identification code	lt_7			
Empirical formula	C18 H20 O3			
Formula weight	284.34			
Temperature	298(2) K			
Wavelength	0.71073 Å			
Crystal system	Monoclinic			
Space group	P2(1)			
Unit cell dimensions	a = 6.4225(4) Å	$\Box = 90^{\circ}.$		
	b = 12.4973(7) Å	$\Box = 101.243(6)^{\circ}.$		
	c = 9.8176(7) Å	$\Box = 90^{\circ}.$		
Volume	772.88(9) Å ³			
Z	2			
Density (calculated)	1.222 Mg/m ³			
Absorption coefficient	0.082 mm ⁻¹			
F(000)	304			
Crystal size	? x ? x ? mm ³			
Theta range for data collection	3.50 to 26.06°.			
Index ranges	-7<=h<=6, -15<=k<=15, -	-12<=l<=11		
Reflections collected	5223			
Independent reflections	1592 [R(int) = 0.0411]			
Completeness to theta = 26.06°	99.7 %			
Absorption correction	None			
Refinement method	Full-matrix least-squares	on F ²		
Data / restraints / parameters	1592 / 1 / 198			
Goodness-of-fit on F ²	1.051			
Final R indices [I>2sigma(I)]	R1 = 0.0444, wR2 = 0.092	25		
R indices (all data)	R1 = 0.0752, wR2 = 0.102	57		
Absolute structure parameter	-0.3(19)			
Largest diff. peak and hole	0.187 and -0.180 e.Å ⁻³			
	Х	У	Z	U(eq)
-------	----------	----------	---------	-------
O(1)	6576(4)	1791(2)	2077(2)	61(1)
O(2)	3301(4)	-2930(2)	656(2)	57(1)
O(3)	9213(4)	6427(2)	690(3)	74(1)
C(2)	5625(5)	1142(3)	3000(3)	49(1)
C(3)	7244(5)	1130(3)	4373(4)	59(1)
C(4)	8399(5)	2166(3)	4337(3)	60(1)
C(5)	8532(5)	2269(3)	2820(4)	52(1)
C(6)	6305(7)	920(5)	5619(4)	95(2)
C(7)	10528(6)	2277(4)	5332(4)	90(1)
C(8)	5031(5)	63(2)	2373(4)	46(1)
C(9)	6388(5)	-506(3)	1717(4)	56(1)
C(10)	5841(5)	-1507(3)	1138(4)	57(1)
C(11)	3913(5)	-1941(3)	1217(3)	45(1)
C(12)	2553(5)	-1400(3)	1891(4)	56(1)
C(13)	3120(5)	-407(3)	2462(4)	57(1)
C(14)	8752(5)	3372(3)	2270(3)	47(1)
C(15)	7158(5)	4127(3)	2230(4)	59(1)
C(16)	7343(5)	5140(3)	1703(4)	62(1)
C(17)	9120(5)	5420(3)	1225(4)	53(1)
C(18)	10742(5)	4688(3)	1258(4)	54(1)
C(19)	10533(5)	3675(3)	1771(4)	52(1)

Table 2. Atomic coordinates ($x\;10^4$) and equivalent isotropic displacement parameters (Å $^2x\;10^3$)

P	. (
for LT_7.	U(eq) is defined as one third of	the trace of the orthogonalized U ^{ij} tenso	r.

O(1)-C(2)	1.437(4)
O(1)-C(5)	1.452(3)
O(2)-C(11)	1.378(4)
O(3)-C(17)	1.368(4)
C(2)-C(8)	1.501(4)
C(2)-C(3)	1.533(5)
C(3)-C(6)	1.489(5)
C(3)-C(4)	1.496(5)
C(4)-C(5)	1.513(5)
C(4)-C(7)	1.524(4)
C(5)-C(14)	1.497(5)
C(8)-C(9)	1.378(5)
C(8)-C(13)	1.379(4)
C(9)-C(10)	1.390(5)
C(10)-C(11)	1.368(4)
C(11)-C(12)	1.373(5)
C(12)-C(13)	1.381(5)
C(14)-C(19)	1.383(5)
C(14)-C(15)	1.387(4)
C(15)-C(16)	1.381(5)
C(16)-C(17)	1.362(5)
C(17)-C(18)	1.382(5)
C(18)-C(19)	1.379(5)
C(2)-O(1)-C(5)	110.3(2)
O(1)-C(2)-C(8)	110.7(3)
O(1)-C(2)-C(3)	105.1(2)
C(8)-C(2)-C(3)	115.2(3)
C(6)-C(3)-C(4)	117.0(4)
C(6)-C(3)-C(2)	114.2(3)
C(4)-C(3)-C(2)	103.0(3)
C(3)-C(4)-C(5)	102.7(3)
C(3)-C(4)-C(7)	116.8(3)
C(5)-C(4)-C(7)	114.0(3)

Table 3. Bond lengths [Å] and angles [°] for LT_7.

109.3(2)
104.5(2)
117.4(3)
117.5(3)
121.5(3)
121.0(3)
121.5(3)
119.6(3)
120.0(3)
121.6(3)
118.4(3)
119.7(3)
121.7(3)
117.4(3)
121.5(3)
121.1(3)
121.1(3)
120.3(3)
118.1(3)
120.0(3)
121.9(3)
119.3(3)
121.8(3)

Symmetry transformations used to generate equivalent atoms:

	– U ¹¹	U ²²	U33	U ²³	U13	U ¹²
O(1)	- 84(2)	46(2)	50(1)	4(1)	5(1)	-23(1)
O(2)	78(2)	39(1)	57(2)	-1(1)	20(1)	-9(1)
O(3)	79(2)	36(2)	109(2)	9(1)	24(2)	-7(1)
C(2)	55(2)	37(2)	55(2)	2(2)	12(2)	-2(2)
C(3)	70(2)	51(2)	55(2)	4(2)	12(2)	-6(2)
C(4)	63(2)	59(2)	54(2)	6(2)	1(2)	-2(2)
C(5)	53(2)	39(2)	63(2)	0(2)	10(2)	0(2)
C(6)	107(3)	109(4)	69(3)	15(3)	13(2)	-19(3)
C(7)	86(3)	97(4)	77(3)	2(3)	-9(2)	-15(3)
C(8)	55(2)	34(2)	49(2)	3(2)	11(2)	-2(1)
C(9)	55(2)	48(2)	70(3)	-6(2)	22(2)	-9(2)
C(10)	58(2)	53(2)	67(2)	-5(2)	25(2)	2(2)
C(11)	59(2)	31(2)	46(2)	5(2)	13(1)	-3(2)
C(12)	56(2)	43(2)	73(3)	-2(2)	25(2)	-12(2)
C(13)	62(2)	48(2)	67(3)	-7(2)	26(2)	-4(2)
C(14)	51(2)	38(2)	50(2)	-3(2)	8(1)	-5(1)
C(15)	54(2)	43(2)	81(3)	-2(2)	19(2)	-6(2)
C(16)	57(2)	40(2)	88(3)	3(2)	15(2)	-1(2)
C(17)	60(2)	31(2)	64(2)	-6(2)	7(2)	-7(2)
C(18)	54(2)	45(2)	64(2)	-8(2)	18(2)	-6(2)
C(19)	51(2)	37(2)	68(2)	-5(2)	16(2)	0(2)

_

Table 4. Anisotropic displacement parameters $(Å^2 x \ 10^3)$ for LT_7. The anisotropic displacement factor exponent takes the form: $-2\Box^2[h^2 a^{*2}U^{11} + ... + 2h k a^{*} b^{*} U^{12}]$

	Х	У	Z	U(eq)
H(2)	3770(50)	-3030(40)	-140(40)	85
H(3)	10560(80)	6590(40)	580(50)	111
H(2A)	4333	1500	3155	59
H(3A)	8255	553	4313	71
H(4A)	7472	2739	4551	72
H(5A)	9727	1835	2651	62
H(6A)	7419	872	6426	143
H(6B)	5530	259	5498	143
H(6C)	5362	1493	5737	143
H(7A)	11126	2967	5212	135
H(7B)	11476	1728	5140	135
H(7C)	10323	2207	6270	135
H(9A)	7700	-214	1659	68
H(10A)	6780	-1878	700	69
H(12A)	1254	-1701	1963	67
H(13A)	2189	-47	2918	69
H(15A)	5943	3948	2563	70
H(16A)	6250	5632	1675	74
H(18A)	11962	4877	937	64
H(19A)	11621	3182	1781	62

Table 5. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å²x 10^3) for LT_7.

C(5)-O(1)-C(2)-C(8)	-131.3(3)
C(5)-O(1)-C(2)-C(3)	-6.2(3)
O(1)-C(2)-C(3)-C(6)	155.4(4)
C(8)-C(2)-C(3)-C(6)	-82.5(4)
O(1)-C(2)-C(3)-C(4)	27.4(3)
C(8)-C(2)-C(3)-C(4)	149.6(3)
C(6)-C(3)-C(4)-C(5)	-163.5(3)
C(2)-C(3)-C(4)-C(5)	-37.3(3)
C(6)-C(3)-C(4)-C(7)	71.0(5)
C(2)-C(3)-C(4)-C(7)	-162.8(3)
C(2)-O(1)-C(5)-C(14)	-143.7(3)
C(2)-O(1)-C(5)-C(4)	-17.2(3)
C(3)-C(4)-C(5)-O(1)	34.0(3)
C(7)-C(4)-C(5)-O(1)	161.3(3)
C(3)-C(4)-C(5)-C(14)	155.2(3)
C(7)-C(4)-C(5)-C(14)	-77.5(4)
O(1)-C(2)-C(8)-C(9)	44.0(4)
C(3)-C(2)-C(8)-C(9)	-75.1(4)
O(1)-C(2)-C(8)-C(13)	-137.5(3)
C(3)-C(2)-C(8)-C(13)	103.4(4)
C(13)-C(8)-C(9)-C(10)	1.3(5)
C(2)-C(8)-C(9)-C(10)	179.9(3)
C(8)-C(9)-C(10)-C(11)	0.1(5)
C(9)-C(10)-C(11)-C(12)	-1.4(5)
C(9)-C(10)-C(11)-O(2)	179.9(3)
C(10)-C(11)-C(12)-C(13)	1.4(5)
O(2)-C(11)-C(12)-C(13)	-179.9(3)
C(9)-C(8)-C(13)-C(12)	-1.4(5)
C(2)-C(8)-C(13)-C(12)	-179.9(3)
C(11)-C(12)-C(13)-C(8)	0.1(5)
O(1)-C(5)-C(14)-C(19)	-124.5(3)
C(4)-C(5)-C(14)-C(19)	116.8(3)
O(1)-C(5)-C(14)-C(15)	54.8(4)
C(4)-C(5)-C(14)-C(15)	-63.9(4)

Table 6. Torsion angles [°] for LT_7.

C(19)-C(14)-C(15)-C(16)	0.3(5)
C(5)-C(14)-C(15)-C(16)	-179.0(3)
C(14)-C(15)-C(16)-C(17)	-0.7(6)
C(15)-C(16)-C(17)-O(3)	178.8(3)
C(15)-C(16)-C(17)-C(18)	0.4(6)
C(16)-C(17)-C(18)-C(19)	0.3(5)
O(3)-C(17)-C(18)-C(19)	-178.0(3)
C(17)-C(18)-C(19)-C(14)	-0.7(5)
C(15)-C(14)-C(19)-C(18)	0.4(5)
C(5)-C(14)-C(19)-C(18)	179.7(3)

Symmetry transformations used to generate equivalent atoms:

Table 7. Hydrogen bonds for LT_7 [Å and °].

 D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)	
O(2)-H(2)O(1)#1	0.90(4)	1.89(4)	2.723(3)	154(3)	
O(3)-H(3)O(2)#2	0.92(5)	1.84(5)	2.752(4)	169(5)	

Symmetry transformations used to generate equivalent atoms: #1 -x+1,y-1/2,-z #2 x+1,y+1,z

APÉNDICE B

ARTÍCULO PUBLICADO

SHORT COMMUNICATION Antibacterial and Antimycobacterial Lignans and Flavonoids from Larrea tridentata

J. M. J. Favela-Hernández, 1 A. García, 1 E. Garza-González, 2 V. M. Rivas-Galindo 2 and M. R. Camacho-Corona 1*

¹Universidad Autónoma de Nuevo León, UANL, Facultad de Ciencias Químicas, Av. Universidad s/n, Ciudad Universitaria, San Nicolás de los Garza, Nuevo León CP 66451, Mexico
²Universidad Autónoma de Nuevo León, UANL, Facultad de Medicina. Madero y Aguirre Pequeño, Mitras Centro Monterrey, Nuevo León C.P. 64460, Mexico

Three lignans and four flavonoids were isolated and characterized from *Larrea tridentata* and compounds were tested against 16 bacterial species/strains. Results showed that: dihydroguaiaretic acid (1) had activity towards methicillin resistant (MR) *Staphylococcus aureus* (minimum inhibitory concentration (MIC) 50 µg/mL) and multidrug-resistant (MR) *Staphylococcus aureus* (minimum inhibitory concentration (MIC) 50 µg/mL) and multidrug-resistant (MDR) strains of *Mycobacterium tuberculosis* (MIC 12.5–50 µg/mL); 4-epi-larreatricin (2) was active against *Enterobacter cloacae* (MIC 12.5 µg/mL), as well as sensitive (MIC 50 µg/mL) and MDR strains of *M. tuberculosis* (MIC 25 µg/mL). 3'-Demethoxy-6-O-demethylisoguaiacin (3) displayed activity against sensitive and resistant *S. aureus* (MIC 25 µg/mL), *Enterococcus faecalis* (MIC 12.5 µg/mL), *Escherichia coli* (MIC 50 µg/mL), *E. cloacae* (MIC 12.5 µg/mL), and MDR strains of *M. tuberculosis* (MIC 12.5 µg/mL). 3'-Demethoxy-6-O-demethylisoguaiacin (3) displayed activity against sensitive and resistant *S. aureus* (MIC 25 µg/mL), *Enterococcus faecalis* (MIC 12.5 µg/mL), *E, cloacae* (MIC 12.5 µg/mL), and MDR strains of *M. tuberculosis* (MIC 12.5 µg/mL). 5,4'-Dihydroxy-3,7,8,3'-tetramethoxyflavone (4) and 5,4'-dihydroxy-3,7,8-trimethoxyflavone (5) were active against *M. tuberculosis* MDR strains having MIC values of 25 and 25–50 µg/mL, respectively, while 5,4'-dihydroxy-7-methoxyflavone (6) was active against *S. aureus* (MIC 50 µg/mL) and *E. faecalis* (MIC 50 µg/mL). We concluded that lignan 3 is the main compound responsible for the antibacterial activity of *L. tridentata.* Lignans 1 and 2 as well as flavonoid 6 contribute with some degree of antibacterial activity. On the other hand, compounds 1, 2, 3, 4 and 5 contributed to the antimycobacterial activity found in *L. tridentata.* Copyright © 2012 John Wiley & Sons, Ltd.

Keywords: Larrea tridentate; lignans; flavonoids; antibacterial; antimycobacterial.

INTRODUCTION

One of the main threats to global public health is the prevalence of infectious diseases of the respiratory tract caused by opportunistic bacteria in hospitals that had acquired resistance to antimicrobial agents (Sostarich et al., 2008). Further, one-third of the world population is infected with Mycobacterium tuberculosis, the causative agent of tuberculosis, which kills 1.7 million people each year (WHO, 2010). Currently, there is need to find new active principles that serve as templates for the development of new antimicrobial agents, and plants are a source of them. In previous studies we carried out a screening of 36 extracts obtained from nine plants used in Mexican traditional medicine to treat respiratory infections including tuberculosis. The results of those studies showed that the chloroformic extract of Larrea tridentata had activity against methicillin resistant (MR) Staphylococcus aureus BAA-44 (MIC 250 µg/mL), Bacillus subtilis (MIC 62.25 µg/mL), Lysteria monocytogenes (MIC 125 µg/mL), Acinetobacter baumannii (MIC 125 µg/mL) (Bocanegra-García et al., 2009) and a sensitive (MIC

* Correspondence to: Dr. María del Rayo Camacho-Corona, Universidad Autónoma de Nuevo León, UANL, Facultad de Ciencias Químicas, Av. Universidad s/n, Ciudad Universitaria, San Nicolás de los Garza, Nuevo León CP 66451.

E-mail: maria.camachocn@uanl.edu.mx

Copyright © 2012 John Wiley & Sons, Ltd.

 $200 \,\mu$ g/mL) and four monoresistant strains of *M. tuberculosis* H37Rv (MIC 100–200 μ g/mL) (Camacho-Corona *et al.*, 2008). Thus, we carried out the isolation and characterization of active compounds from *L. tridentata*.

MATERIALS AND METHODS

Plant material. *L. tridentata* leaves were collected in Galeana, Nuevo Leon, Mexico in April 2006. Plant material was identified by biologist Mauricio Gonzalez Ferrara. A sample reference (Voucher 024772) was deposited at UANL herbarium located in Facultad de Ciencias Biologicas, Universidad Autonoma de Nuevo Leon, Mexico.

Extraction and isolation. Dried and ground leaves (500 g) were extracted first with hexane $(2 \times 2 \text{ L})$ and then with CHCl₃ $(3 \times 3 \text{ L})$ by maceration. Extracts were distilled *in vacuo* separately until dryness. A total of 89 g of chloroformic extract was obtained. A portion of this extract (80 g) was subjected to silica gel column chromatography (CC) eluted with gradient CHCl₃–MeOH yielding 13 fractions. Fractions 3 and 4 (10 g) were chromatographed on silica gel CC eluted with CHCl₃ yielding 10 subfractions. The subfractions 6 and 7 afforded a solid, which was purified by recrystallization in hexane:EtOAc 80:20 yielding compound

Received 04 September 2011 Revised 03 February 2012 Accepted 05 February 2012

1 (730 mg). Fraction 5 (7 g) was subjected to silica gel CC eluted with CHCl₃-MeOH gradient, giving 30 subfractions, the subfractions 11-24 afforded compound 6 (5 mg). Fractions 6 and 7 (17 g) were subject to silica gel CC eluted with CHCl3-MeOH gradient, yielding 29 subfractions, the subfractions 7-20 gave compound 4 (31.8 mg). Fraction 8 (15 g) yielded a solid that was purified by recrystallization with CHCl₃: MeOH (98:2) affording compound 5 (678 mg). Fraction 9 (9 g) was subjected to silica gel CC eluted with CHCl₃-MeOH gradient, giving 150 subfractions. Silica gel preparative thin-layer chromatography eluted with CHCl₃:MeOH 90:10 was done with subfractions 26-70 yielding compound 7 (86.7 mg). Fraction 10 (18g) was chromatographed successively on three silica gel CC, each one eluted with a CHCl3-MeOH gradient. From subfractions 42-73 of the third column eluted with 98:2 and 97:3 CHCl3:MeOH a brown solid precipitated, which was purified by crystallization with 98:2 CHCl₃:MeOH yielding a beige solid, compound 3 (142.4 mg). Fraction 11-13 (13g) was subjected to three silica gel CC, each column was eluted with CHCl3-MeOH gradient, from the last column the subfractions 8 and 9 (95:5 CHCl₃:MeOH) afforded compound 2 (11 mg).

Structural elucidation of compounds. The seven isolated compounds (Fig. 1) were characterized as lignans – dihydroguaiaretic acid (1; Gnabre *et al.*, 1995), 4-*epi*-larreatricin (2; Konno *et al.*, 1990), 3'-demethoxy-6-O-demethylisoguaiacin (3; Konno *et al.*, 1989) – and flavonoids – 5,4'-dihydroxy-3,7,8,3'-tetramethoxyflavone (4; Bernhard and Thiel, 1981), 5,4'-dihydroxy-3,7,8-trimethoxyflavone (5; Bernhard and Thiel, 1981), 5,4'-dihydroxy-7-methoxyflavone (6; Sakakibara *et al.*, 1976) and 5,8,4'-trihydroxy-3,7-dimethoxyflavone (7; Sakakibara *et al.*, 1975) – by analysing their NMR spectra and comparing their spectroscopic data with those in literature. ¹H- and ¹³C-NMR spectra were obtained on a 400 MHz Bruker NMR spectrometer.

Bacterial strains and inoculum preparation. The following organisms were used for antibacterial assays Gram-negative bacteria: Stenotrophomona maltophilia American Type Culture Collection (ATCC) 12714, Escherichia coli ATCC 25922, Acinobacter baumannii ATCC 15308, Haemophilus influenzae ATCC 49766, Pseudomonas aeruginosa ATCC 27853, Klebsiella pneumoniae ATCC 700603 and ATCC 35030, Enterobacter cloacae. Gram-positive bacteria: Staphylococcus aureus ATCC 29213, S. aureus (MR) ATCC BAA-44, Streptococcus pneumoniae ATCC 49619, Lysteria monocytogenes ATCC 19111 and Enterococcus faecalis ATCC 29212. Clinical isolates: E. faecalis (8736, 8561, 8345, 8562, 8568), E. coli (8877, 8992, 9122, 8829, 8827), E. cloacae (9299, 9220, 9181, 8960, 9234), S. aureus (9201, 8981, 8857) and S. aureus (MR) (9196, 8927, 9199, 8997, 9200, 8859, 9105). Bacterial strains were inoculated onto plates prepared with 5% blood agar, grown for 24 h at 37°C. For H. influenzae, strains were inoculated onto 5% chocolate agar and incubated in 5% CO₂ atmosphere for 48 h. To prepare inocula, three to five colonies of each culture were transferred into tubes with sterile saline and turbidity was adjusted to 0.5 McFarland standard that had 1.5×10^8 colony forming units (CFU)/mL. Subsequently, 10 µL were transferred to 11 mL Mueller-Hinton broth to achieve 5×10^5 CFU/mL. Haemophilus test medium (HTM) medium was used for H. influenzae; (TES)/lysed horse blood was used for S. pneumoniae. For antimycobacterial activity M. tuberculosis H37Rv ATCC 27294 sensitive to izoniazid, rifampicin, ethambutol and pyrizanamide and three multidrug resistant (MDR) clinical isolates of M. tuberculosis (M15, M20, M26), which are resistant to isoniazid and rifampin (kindly provided by Dr Virgilio Bocanegra-García), were used. Mycobacteria were cultured in Middlebrook 7H9 broth supplemented with 0.2% glycerol and 10% OADC at 37°C for 2 weeks in order to reach logarithmic phase growth. The testing inoculum was prepared by diluting the bacterial suspension with culture medium to adjust turbidity to McFarland's nephelometer No. 1 standard

Figure 1. Structures of isolated lignans (1, dihydroguaiaretic acid; 2, 4-*epi*-larreatricin; 3, 3'-demethoxy-6-*O*-demethylisoguaiacin) and flavonoids (4, 5,4'-dihydroxy-3,7,8,3'-tetramethoxyflavone; 5, 5,4'-dihydroxy-3,7,8-trimethoxyflavone; 6, 5,4'-dihydroxy-7-methoxyflavone; 7, 5,8,4'-trihydroxy-3,7-dimethoxyflavone) from *Larrea tridentata*.

Copyright © 2012 John Wiley & Sons, Ltd.

Phytother. Res. (2012)

			Compounds						
Bacteria	ATCC/c.i.	1	2	3	4	5	6	7	Levofloxacin
Staphylococcus aureus	29213	> 50	> 50	25	> 50	> 50	50	> 50	6.25
Staphylococcus aureus MR	BAA-44	50	> 50	25	> 50	> 50	> 50	> 50	6.25
Enterococcus faecalis	29212	> 50	> 50	12.5	> 50	> 50	50	> 50	0.78
Escherichia coli	25922	> 50	> 50	50	> 50	> 50	> 50	> 50	0.78
Enterobacter cloacae	35030	> 50	12.5	12.5	> 50	> 50	> 50	> 50	0.78
Enterococcus faecalis	c.i. <i>n</i> = 5	nd	nd	12.5-25	nd	nd	nd	nd	50
Staphylococcus aureus	c.i. <i>n</i> = 3	nd	nd	12.5-25	nd	nd	nd	nd	12.5
Staphylococcus aureus MR	c.i. <i>n</i> = 7	nd	nd	12.5	nd	nd	nd	nd	12.5
									Isoniazid
Mycobacterium tuberculosis H37Rv	27294	50	50	> 50	> 50	> 50	> 50	> 50	0.02
Mycobacterium tuberculosis MDR	c.i. <i>n</i> = 3	12.5-50°	25ª	12.5 ^b	25ª	25-50°	> 50	> 50	4.0-6.0

radic 1. mic values (µg/mil) of compounds isolated from Lanea mathatia against back	Table 1.	MIC	values	$(\mu g/mL)$) of	compounds	isolated	from	Larrea	tridentata	against	bacte
---	----------	-----	--------	--------------	------	-----------	----------	------	--------	------------	---------	-------

c.i., clinical isolates; n.d., not determined.

^aActive against one strain; ^bactive against two strains; ^cactive against three strains of MDR *M. tuberculosis*.

and it was then further diluted to 1:20 with the same culture medium.

Antibacterial and antimycobacterial assays. Antibacterial and antimycobacterial assays were determined as previously described in the literature (Camacho-Corona *et al.*, 2008; Bocanegra-García *et al.*, 2009). An institutional ethical committee has approved this work.

RESULTS AND DISCUSSION

From the chloroformic active extract of L. tridentata seven compounds were isolated these were characterized by spectroscopic analysis (Fig. 1). Antibacterial activity was determined with the above compounds against 12 ATCC bacteria strains. The results showed (Table 1) that except for compound 7 all compounds tested showed some degree of activity against five of the 12 bacteria tested. Lignan 3 was active against sensitive and resistant S. aureus (MIC 25 µg/mL), E. faecalis (MIC 12.5 µg/mL), E. coli (MIC 50 µg/mL), and E. cloacae (MIC 12.5 µg/mL). Bocanegra-Garcia and colleagues (2009) reported that the chloroformic extract of L. tridentata was active against S. aureus MR (MIC 250 µg/mL) and clinical isolates (MIC 12.5-100 µg/mL, n=25) so this activity could be attributed mainly to compound 3. In addition, lignans 1 and 2 showed activity against S. aureus MR (MIC 50 µg/mL) and E. cloacae (MIC 12.5 µg/ mL), respectively. It has been reported that compound 1 had activity against S. aureus (MIC 1.6 mM; Kawaguchi et al., 2009) and our results are in agreement with those in literature. On the other hand, the flavone 6 showed weak activity against S. aureus (MIC 50 µg/mL) and E. faecalis (MIC 50 µg/mL). Martini et al. (2004) reported that flavone 6 had activity against E. faecalis (MIC 50 µg/mL) and E. coli (100 µg/mL) and these results are in agreement with our study. As lignan 3 showed the best activity towards the bacteria tested, this compound was further tested against clinical isolates. The results (Table 1) showed that lignan 3 was active against clinical isolates of E. faecalis (MIC 12.5–50 μ g/mL, n=5) being equally active or two or

Copyright © 2012 John Wiley & Sons, Ltd.

three times more active than standard levofloxacin (MIC 50 μ g/mL). Further, compound 3 had similar activity to levofloxacin (MIC 12.5 μ g/mL) against clinical isolates of *S. aureus* (MIC 12.5-25 μ g/mL *n*=3) and *S. aureus* MR (MIC 12.5 μ g/mL *n*=7). These results are relevant because of the high prevalence of methicillin-resistant strains of *S. aureus* through the world.

Finally, antimycobacterial activity was determined for all compounds isolated. Results (Table 1) showed that lignan 1 gave activity against one sensitive (MIC 50 µg/mL) and three MDR strains (MIC 12.5–50 µg/mL) of M. tuberculosis. Lignan 2 was active against the sensitive H37Rv strain (MIC 50µg/mL) and one MDR strain (MIC 25µg/mL), whereas lignan 3 was active against two MDR strains (12.5 MIC µg/mL). Flavonoids 4 (MIC 25 μ g/mL) and 5 (MIC 25–50 μ g/mL) were active towards one and three resistant strains, respectively. None of the compounds tested was as active as isoniazid against the sensitive (MIC 0.02 µg/mL) and MDR (MIC 4-6 µg/mL) strains of *M. tuberculosis*. It is important to point out that this is the first report of antimycobacterial activity of all isolated compounds. We conclude that lignan 3 is the main compound responsible for antibacterial activity of the chloroformic extract of L. tridentata. Further, lignans 1 and 2 as well as flavonoid 6 also contribute with some degree of antibacterial activity. On the other hand, compounds 1, 2, 3, 4 and 5 contributed to the antimycobacterial activity found in L. tridentata.

Acknowledgments

This project was financially supported by Mexican grants: CONACYT-SEP-CB-2008-01(project 106107) and PAICYT SA221-09. Authors acknowledge Dr Colin W. Wright for English grammar corrections and improvement to this manuscript.

Conflict of Interest

The authors have declared that there is no conflict of interest.

Phytother. Res. (2012)

J. M. J. FAVELA-HERNÁNDEZ ET AL.

REFERENCES

- Bernhard HO, Thiel K. 1981. Additional flavonoids from the leaves of *Larrea tridentata*. *Planta Med* **41**: 100–101.Bocanegra-García V, Camacho-Corona MR, Ramírez-Cabrera MA,
- Rivera G, Garza-González E. 2009. The bioactivity of plant extracts against representative bacterial pathogens of the lower respiratory tract. BMC Res Notes 1: 95-98
- Camacho-Corona MR, Ramírez-Cabrera MA, González-Santiago O, Garza-González E, Palacios I, Luna-Herrera J. 2008. Activity against drug resistant-tuberculosis strains of plants used in mexican traditional medicine to treat tuberculosis and other respiratory disease. J Phytother Res 22: 82-85.
- Gnabre J, Huan R, Bates RB, et al. 1995. Characterization of anti-HIV lignans from Larrea tridentata. Tetrahedron 51: 12203–12210.
- Kawaguchi Y, Yamauchi S, Masuda K, et al. 2009. Antimicrobial activity of stereoisomers of butane-type lignans, *Biosci Biotechnol Biochem* 73: 1806–1810.
- Konno C, Lu ZZ, Xue HZ, et al. 1990. Furanoid lignans from Larrea tridentata. J Nat Prod 53: 396–406.

- Konno C, Xue HZ, Erdelmeier CAJ, et al. 1989. 1-Aryl tetralin lignans from Larrea tridentate. J Nat Prod 52: 1113–1117. Martini ND, Katerere DR, Eloff JN. 2004. Biological activity of five
- antibacterial flavonoids from *Combretum erythrophyllum* (Combretaceae). *J Ethnopharmacol* **93**: 207–212.
- Sakakibara M, Timmermann BN, Nakatani N, Waldrum H, Mabry TJ. 1975. New 8-hydroxyflavonols from Larrea tridentata. Phytochemistry 14: 849–851.
- Sakakibara M, Di-Feo D, Nakatani N, Timmermann B, Mabry TJ. 1976. Flavonoid methyl ethers on the external leaf surface of Larrea tridentata and L. divaricata. Phytochemistry 15: 727-731.
- Sostarich AM, Zolldann D, Haefner H, Luetticken R, Schulze-Sostarich AM, Zolldann D, Haetner H, Luetticken R, Schulze-Roebecke R, Lemmen SW. 2008. Impact of multiresistance of gram-negative bacteria in bloodstream infection on mor-tality rates and length of stay. *Infection* 36: 31–35.
 WHO. 2010. *Global Turbeculosis Control*. World Health Organization: Geneva.

Copyright © 2012 John Wiley & Sons, Ltd.

APÉNDICE C

RESÚMEN AUTOBIOGRÁFICO

Juan Manuel de Jesús Favela Hernández

Candidato para el Grado de

Doctor en Ciencias con Orientación en Farmacia

Tesis: Aislamiento y caracterización de los compuestos antibacterianos y antituberculosos de *Larrea tridentata*, determinación de su toxicidad y mecanismo de acción del compuesto más activo"

Campo de estudio: Química y famacología de productos naturales.

Biografía: Datos personales: Nacido en la ciudad de Torreón Coahuila México el 5 de febrero de 1983, hijo de Juan Manuel Favela Treviño y Olga Hernández de Favela.

Educación: Egresado de la Universidad Juárez del Estado de Durango, grado obtenido de Químico Farmacéutico Biólogo, titulado por redacción de monografía que lleva por nombre "Antirretrovirales: usos y aplicación médica". Egresado de la Facultad de Ciencias Químicas UANL. Grado obtenido Maestría en Ciencias con Orientación en Farmacia, titulado por tesis "Separación y caracterización de los principios antituberculosos de *Olea europea*"

Experiencia profesional: LALA TORREON S. A DE C.V Calzada Cuahtemoc. 1422 nte. Departamento de producción y Granja Porcina "PEREZ HERNANDEZ" San Ignacio Km 42. Durango. México.