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AbstratInstantaneous Estimation of Osillating Phasorswith TaylorK-Kalman-Fourier FiltersPubliation No.Johnny Rodríguez MaldonadoUniversidad Autónoma de Nuevo LeónFaultad de Ingeniería Meánia y ElétriaAdvisor: Dr. José Antonio de la O SernaAug 2011One of the most ommon phasor estimation tehniques used nowadays isthe one-yle Fourier �lter whih estimate the phasor as the fundamental Fourieroe�ient of the digital Fourier transform (DFT). It ahieve exat estimates and hasfull harmoni rejetion with steady-state input signals. But its phasor estimates arealways delayed beause it orresponds to the implementation of a symmetri �niteimpulse response (FIR) �lter. The Kalman �lter was also proposed in the eightiesassuming also a stati signal model (onstant amplitude, frequeny and phase) forthe input voltage or urrent signals. At that time, it was demonstrated that it wasequivalent to the Fourier �lter and was quikly abandoned in the literature. In thiswork, we propose to extend the stati signal model to a dynami one, in whihamplitude, frequeny and phase are represented by band limited time funtions.A Taylor approximation to those dynami funtions provides a state transitionmatrix that an be used in the Kalman algorithm. As the state vetor ontainsthe instantaneous �rst derivatives of the dynami phasor, this signal model allowsto estimate not only the dynami phasor but also its �rst derivatives. The Taylorsignal model together with the Kalman algorithm lead us to the TaylorK-Kalman�lter. Given the model, the traditional Kalman �lter of the eighties orrespondsto the Taylor0-Kalman �lter, And by extending its state transition matrix to eahvi



harmoni frequeny, we arrive to the TaylorK-Kalman-Fourier �lter whih o�er analternative to alulate the digital Fourier transform, but with ausal in�nite impulseresponse (IIR) �lters. This means that its estimates are instantaneous (no delay atall), with muh less in�ltrated harmoni errors, as ompared with the FFT estimates,and reduing the omputational omplexity.The main ontribution of this thesis is to have found the state-transition matrixof a state spae dynami signal model orresponding to the K-th order Taylorapproximation to a power osillation signal. With these transition matries, theKalman �lter algorithm an be applied to �nd observers able to estimate the dynamiphasor and its �rst derivatives. The estimates obtained through this tehnique, arenot only synhronous but also instantaneous, whih is an important attribute forontrol appliations. They also provide frequeny estimates. The new �lters reduethe total vetor error ahieved with the traditional Kalman �lter; are muh morestable, with settling times �ve times lower; and improve the phasor estimates ofosillations with frequeny o�set.On the other hand one of the anomalies of the di�erentiators implemented withlinear-phase �nite impulse response (FIR) �lters is their onstant delay. Controlappliations require instantaneous estimates. Here we present a new family ofderivative estimators referred to as TaylorK-Kalman �lters. They ahieve idealdi�erentiator gains about the fundamental frequeny for K ≥ 2. By inluding thehalf sampling frequeny omponent, their high sideband gain is mitigated, leadingto low-pass (LP) �lters. But the best gain redution is obtained when the signalmodel inorporates the whole set of harmoni frequenies, obtaining the TaylorK-Kalman-Fourier di�erentiators, whih are able to estimate the derivatives of theomplex envelope at eah harmoni frequeny. They preserve the ideal di�erentiatorgain not only in the fundamental frequeny, but also at eah inluded harmonifrequeny. When the spetral load of the input signal falls under the ideal operationbands, they operate as ideal di�erentiators, mapping the signal into its derivatives,making a Taylor-Fourier deomposition. But their main advantage is they provideinstantaneous derivative estimates, very useful for ontrol appliations.With the new TaylorK-Kalman(TK-K) �lters forK ≥ 2 are able to form a zero-�at phase response around the fundamental frequeny, and to produe instantaneousosillating phasor estimates. The frequeny response of the zeroth and seond order�lters are established and illustrated. Their high sensitivity to noise lead us to designvii



more robust �lters referred to as TaylorK-Kalman-Fourier, beause they inorporatethe whole set of harmonis in their signal model. The bank of omb �lters ahievedwith K = 0 is equivalent to that of the Disrete Fourier Transform (DFT), andthe bank of fene �lters ahieved with K = 2 is similar to that of the Taylor2-Fourier transform, exept that their osillating harmoni estimates are instantaneous(without delay). In addition, the omputational omplexity of these extended �ltersis muh more lower (6/Log2(N) for N > 64) than that of the Fast Fourier Transform(FFT), so they are very useful for ontrol appliations of power systems.
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Chapter 1IntrodutionThe prinipal objetive in estimation theory is to ahieve the most preise estimationin shortest time; i.e. the losest to the real value, no matter how omplex theonditions an be: signal orrupted by noise, or with abrupt hanges, et. If itis possible to obtain better results under the last onditions, then the methodis suessful. That is why estimation theory is required in di�erent areas, asommuniation systems, digital signal proessing, ontrol, among many others; andwith diverse appliations suh as measurement, monitoring, �ltering, and so on.One of the well known estimation algorithm is the least squares (LS) method,that was developed by Gauss in 1795, and was inspired by the observation of theomets. He used that method for estimating the trajetory of omets, based in thea posteriori measurements taken by a telesope [1℄. The main disadvantage of thismethod is that it depends on ertain number of observations, and its estimates arealways delayed. This is a disadvantage when it is desirable no to have any delay atall in the estimates.Problem statementIn physis and engineering, a phasor, is omplex number used to represent a sine wavewhose amplitude (A0), phase (ϕ0), and angular frequeny (ω) are time-invariant. Thetraditional method to obtain phasor estimates is the FFT, whih is a speial aseof LS. Its disadvantage is that it needs several samples for having good estimation.In addition, it assumes a stati signal model, i.e. it assumes amplitude, phase andfrequeny onstant, so when the signal has perturbations or the eletrial system1



2moves, the phasor estimates beome erroneous. A more onvenient estimationmethod must take into aount its �utuations. On the other hand the Kalman�lter does not need to have a big number of samples for ahieving a good estimation,it only needs a good state transition matrix, i.e. a signal model.One of the �rst publiations on phasor estimation using Kalman �lter is [2℄,but its state transition matrix was based also on a steady-state sinusoidal model. In[3℄ a method was proposed for measurement the rate and severity of periodi voltage�utuations. In [4℄ the Kalman �lter was implemented on a Zoran ZR34161 VetorSignal Proessor (VSP), but again with a stati signal model, even if it inlud a domponent to estimate the o�set together with the phasor. Other referenes thatused a steady-state sinusoidal signal model are [5℄-[8℄. And sine then Kalman �lterdisappeared in subseuent publiations on phasor estimation and one-yle Fourier�lter prevailed. In this work we show that the problem lies not in the Kalmanalgorithm, but in the signal model. Kalman �lter is an exellent estimator when itworks with a good signal model. So, in this sense, this work resusitates the Kalman�lter in the phasor estimation area.The left side of Fig. 1.1 shows a stati phasor, with onstant amplitude A0and phase ϕ0, marking a �xed point, and on the right side, a phasor following a linewith dynami amplitude a(t) and phase ϕ(t). The seond one an better follow the�utuations of the power system than the �rst, whih is doomed to be onstant.
ℑm

ℜe
b
A0∡ϕ0

Stati Phasor
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ℜea(t)

ϕ(t)

Dynami PhasorFig. 1.1: Di�erene between stati and dynami phasor.Phasors estimated with suh a dynami signal model, are more �exible andsuitable for �utuating signals, beause they an better inherit the movement,



3beause they are more �exible than the stati one. So in this sense, they aretruly dynami in amplitude and phase. With a Taylor polynomial it is possible toapproximate the dynami signal model to the input signal. With this polynomial andits derivatives a state transition matrix for the Kalman algorithm an be established.So, this tehnique is able to obtain not only better phasor estimates, but also itsderivatives. The transient time of these estimates are faster than those of the steady-state signal model used in the traditional Kalman �lter, and with the advantage ofbeing instantaneous estimates, for Taylor orders higher or equal to two. Also, for
K = 0 and when the state transition matrix is extended to inlud the whole set ofharmoni frequenies, it is possible to obtain the FFT, but with less omputationalost. Similarly, with K ≥ 2, the Taylor-Fourier transform an be alulated withless omputational ost and with non delayed estimates.ObjetiveThe prinipal objetive in this work is to develop a methodology for improving thephasor estimates, under smooth osillations. Other objetives are:� Study and ompare the developed methodology with others methodologies.� Determine its advantages and disadvantages: in speed, omputational load,versatility and exatitude.� Obtain good results under smooth osillations or when the signal is orruptedby noise.The tehnique leads to a new bank of di�erentiators with instantaneousderivative estimates for Taylor orders greater or equal to two.Organization of the thesisThe thesis is organized as follow:Chapter 2 Develops the TaylorK-Kalman �lter. For Taylor orders greater thanzero, this �lter redues the phasor estimation error of the traditional Kalman�lter (K = 0) under osillation onditions, abrupt hanges and when the signal



4is orrupted by white Gaussian noise (WGN), beause subspaes with K ≥ 0inlude the zeroth subspae and provide room for osillatory signals.Chapter 3 Presents the frequeny response of the TaylorK-Kalman �lters, and anextension to the full set of harmonis referred to as the TaylorK-Kalman-Fourier, redues sideband gain and provides full rejetion around all theinluded harmoni frequenies. In addition, this �lter bank is able to estimatethe phasor (the omplex envelope) and its derivatives at eah harmonifrequeny. For K = 0 it is equivalent to the DFT, and for K 6= 0 is equivalentto the digital Taylor-Fourier transform.Chapter 4 Deals with the bank of di�erentiators, fousing our attention to the nullfrequeny, or baseband. This bank is very useful when the interest is plaed inestimating the derivatives of a smooth signal (non modulated signal) suh asin ontrol appliations.Chapter 5 Summarizes the onlusions of this researh work.



Chapter 2Instantaneous Osillating PhasorEstimates with TaylorK-KalmanFilters
2.1 IntrodutionPhasor estimation under transient onditions is a hot topi today due to the reentreview of the synhrophasor standard [9℄. On one hand, the introdution of dynamionditions to the lassial phasor onept broke a very old and fundamental shemavery useful in power engineering. On the other, a lak of a unifying theory to explainthe behavior and the relationships among the di�erent phasor estimating tehniquesmakes extremely di�ult to reommend one.There are many algorithms for phasor estimation under transient onditions.Even if the standard [9℄ does not speify a partiular phasor estimation method [10℄,it mentions without referening them [9, Annex C, Figs: C.1 and C.2℄ the followingthree examples: 1 Cyle Retangular [11℄, 3 Cyle �at-top [12℄, and 4 Cyle Raised-Cosine [13℄. Attempts to improve the �rst method under transient onditions andin view of frequeny estimation are reported in [14, 15℄, and [16℄.The dynami phasor onept was �rst proposed in [17℄ to follow the dynamisof the deviations from the periodi behavior of urrent and voltages signals in powersystems. However, it was de�ned as the suessive estimation of the �rst Fourieroe�ient by a short-time Fourier transform of one yle, whih uses the samestati signal model (a signal with onstant amplitude, phase and frequeny) as the5



6Fourier �lter proposed in [11℄. Note that this dynami quali�er, widely reportedin the literature [18℄, refers more to the inherent reursive nature of the estimationproess than to its postulated signal model. It was in [19℄-[20℄ where an estimationimprovement was suggested by relaxing amplitude and phase to time funtions.Phasors estimated with suh a dynami signal model are therefore more �exibleand suitable for �utuating signals, inheriting their movement �exibility. So in thissense, they are truly dynami.The possibility to approah the dynami phasor with a Taylor polynomialthrough the least squares method led to the inlusion of Taylor terms to the Fouriertransform. This tehnique, referred to as Taylor-Fourier transform [21℄, uses theweighted least squares (WLS) approximation to �nd a set of �nite impulse response(FIR) �lters that provide the best estimates (in the WLS sense) not only of thephasor, but also of its �rst derivatives, at the middle of the time observation window.One of the main onerns of this tehnique is the delay of the estimates, due to itstime extended signal model.The main idea of this paper is to use the Kalman �lter as an observer ableto build (estimate) the input signal with the instantaneous dynami phasor and itsderivatives in a state spae vetor. It is based on the fat that Kalman �lter is avery good signal estimator provided its model �ts the input. In our ase, the signalestimates depend only on the instantaneous phasor and its omplex onjugate. Andfor the seond-order model, the estimates are very good.Kalman �lter was proposed for phasor estimation in protetion appliations in[22℄-[23℄. The problem is that its use was intrinsially related to the old stati-phasorparadigm (steady-state sinusoidal signal model) as it an be on�rmed in [24℄-[25℄.This also explains why subsequent publiations [26℄-[27℄ refer to the Kalman �lteras if it were only one. In [11℄, for example, Kalman �lter was ompared to the half-yle Fourier �lter when the proess noise is zero and measurement noise is onstant;and sine then, the Fourier �lter prevailed over the Kalman �lter in subsequentpubliations on phasor estimation. But this omparison did not take into aountthat the phasor estimates provided by a Fourier signal deomposition are delayed,while those obtained through a Kalman signal deomposition are instantaneous forosillatory signals. Besides, it is well known that Kalman �lter estimates dependfundamentally on its state-spae signal model [28℄, and that its performane isremarkable when it oinides with the input signal.



7In this hapter we present the use of the Kalman �lter algorithm for �ndinggood observers able to estimate, not only the dynami phasor, but also its derivatives.The state-spae signal model used in the heart of the Kalman algorithm is obtainedfrom the derivatives of the Kth-order Taylor polynomial modeling the osillationenvelope. This orresponds to a Taylor approximation to its lowpass signal. Thebandpass signal is obtained by a simple modulation operated by a rotation at thatfundamental frequeny in the omplex plane. The main ontribution of this hapteris to provide a state-transition matrix with a sinusoidal signal model relaxed by a
Kth Taylor polynomial to approah the amplitude and phase �utuations betweenone signal sample and the next with the Kalman proedure. This �exibility allowthe Kalman �lter to estimate osillatory signals with higher auray and, at thesame time, to provide estimates not only of the instantaneous phasor itself, but alsoof its derivatives, whih are inluded in the state vetor. The estimates obtained inan osillation example, and the benhmark test signals de�ned in [9, Appendix G℄illustrate the improved performane of this new phasor estimation tehnique.The new approah is then very di�erent to the one reported in [15℄, whihestimates the dynami frequeny from two onseutive phasor estimates using a�nite-di�erene equation. In this ase errors due to the dynami onditions propagateto the frequeny estimates, whih in addition are very sensitive to noise due to thefat that they are based in a �nite-di�erene equation.The hapter is organized as follows: In setion 2.2, the state-spae signal modelis de�ned. Then, in Setion 2.3, the equations of the Kalman �lter as implemented toobtain the results are delared, together with its main referene. Finally, in Setions2.4, and 2.5 the main results using a zeroth-order and seond-order signal modelare presented and disussed. The main onlusion of this hapter is that Kalman�lter is able to provide, under osillation onditions, better instantaneous estimates(synhronized and without delay), not only for the phasor itself but also for at leastits �rst derivative. These results are promising and surely will have a positive impaton the onformation of the new synhrophasor norm, beause under osillations theseestimates are instantaneous (no delay) while they preserve their synhrony, a ruialattribute for their appliation.



82.2 Signal ModelIn [19, 20℄ a bandpass signal model was proposed for power system osillations:
s(t) = a(t) cos(2πf1t + ϕ(t)) (2.1)in whih, a(t) is the amplitude and ϕ(t) the phase of the signal s(t). Bandpasssignals are assumed to be narrowband around the entral frequeny f1. This meansthat amplitude and phase variations are slow with respet to the yli wave.In terms of the omplex exponential funtion the signal model an be simpli�edas

s(t) =
1

2

(

p(t)ej2πf1t + p̄(t)e−j2πf1t
)

= Re{p(t)ej2πf1t}, −
T

2
≤ t ≤

T

2
(2.2)in whih p(t) = a(t)ejϕ(t) is referred to as dynami phasor.The omplex dynami phasor funtion p(t), an be approximated by a KthTaylor polynomial entered at t0:

pK(t) = p(t0) + ṗ(t0)(t− t0) + · · ·+ p(K)(t0)
(t− t0)

K

K!
,

t0 −
T

2
≤ t ≤ t0 +

T

2
. (2.3)A state transition matrix an be easily obtained from the derivatives of eah Taylortrunated dynami phasor. For τ = t− t0 we have:

pK(t) = p(t0) + ṗ(t0)τ + p̈(t0)
τ 2

2!
+ · · ·+ p(K)(t0)

τK

K!

ṗK(t) = ṗ(t0) + p̈(t0)τ + · · ·+ p(K)(t0)
τK−1

(K − 1)!
(2.4)... ...

p
(K)
K (t) = p(K)(t0)Finally, the state transition will be given by:

pK(t) = ΦK(τ)pK(t0). (2.5)



9where pK(t) is the state vetor, and the state transition matrix is of the form:
ΦK(τ) =



















1 τ τ2

2!
· · · τK

K!

1 τ · · · τK−1

(K−1)!

1 · · · τK−2

(K−2)!. . . ...
1



















(2.6)
For a given polynomial order, this approximation is all the more exat as t→ t0if p(t) is a smooth funtion. The trunated model an then be applied at any timeinstane t0 with su�ient preision provided that the size of the time interval τ beshort. This ondition is aomplished between any two digital signal samples beausesamplers usually apply very short sampling periods with respet to the fundamentalperiod T1 = 1

f1
. We assume that the signal is sampled at N1 = 64 samples peryle, so τ = T1/64. This is a very short period of time with respet to the slow�utuations of p(t).The trunated signal model is given by:

sK(t) = Re{hTpK(t)e
j2πf1t} = Re{hTrK(t)} (2.7)where r(t) is the rotated vetor in the time t, and hT extrats its �rst omponent,i. e. hT = [1 0 · · · 0], with K zeros.In terms of the rotated vetor, Eq. (2.5) beomes

rK(t) = ΦK(τ)e
j2πf1τrK(t0). (2.8)Assuming t0 = (n−1)Ts and t = nTs, where Ts is the sampling period (Ts = 1/N1f1),we have the following state transition between the disrete rotated vetors:

rK(n) = ΦK(τ)ψ1rK(n− 1) (2.9)where ψ1 is the phase fator ψ1 = ejθ1, orresponding to the fundamental radianfrequeny (θ1 = 2πf1Ts = 2π/N1). Finally, by de�ning the state transition equationas
(

rK(n)

r̄K(n)

)

=

(

ψ1ΦK(Ts) 0

0 ψ̄1ΦK(Ts)

)(

rK(n− 1)

r̄K(n− 1)

)

, (2.10)the trunated signal model is given by:
sK(n) =

1

2

(

hT hT
)

(

rK(n)

r̄K(n)

)

. (2.11)



10This equation shows the instantaneous dependene of the signal model on thedynami phasor. The Taylor-Kalman �lter is a signal follower that operates as aninstantaneous signal deomposer. Its best dynami rotor estimates will be providedwhen it reahes its smallest signal estimation error, and this in turn happens whenthe input signal is in the subspae spanned by the signal model. This is preiselythe ase of smooth osillations in a seond order subspae (K = 2), as we will see inthe numerial results, in whih signal estimation errors of millionths are reahed.The state transition matrix in (2.10) is omplex 2(K+1)×2(K+1) and workswith the rotated phasors, so to get the dynami phasor estimates with the Kalman�lter they must be anti-rotated to eliminate the its fator. Note that the state spaemodel in (2.10) ontains geneti information of the development of the omplextrajetory from one sample to the next. The steady-state signal model (K = 0)would oblige the phasor to move in irles from one sample to the next. With theTaylor state transition matrix in (2.6), the phasor estimates are allowed to move inmore �exible trajetories, bounded by the highest order term in the polynomial.In the next setion, we onsider how these trunated signal models are usedin the Kalman �lter. This �lter deompose the input signal into the state-vetoromponents. The Kalman deomposition and its estimates are instantaneous underosillatory onditions, without the delay of the Fourier �lter deomposition.2.3 Kalman FilterIn this setion the development of the Kalman �lter in [29, pp. 381-384℄ is followed.Other referenes an be found in [30, 28, 11℄. The state vetor model is
x(n) = Φx(n− 1) + Γv(n), (2.12)in whih the state transition matrix is the one in (2.10) and Γ

T = ( hT hT )sine white Gaussian noise (WGN) v(n) is assumed to a�et only rotated phasoromponent, i.e., the derivatives are not a�eted by noise.On the other hand, the observation (or measurement) model is
s(n) = Hx(n) + w(n) (2.13)We also assume the signal is a�eted by additive WGN through w(n). Finally forboth models we have H = ( hT hT ).



11The Kalman reursive proess will be de�ned by the following sequene for the
nth yle:1. Time update:(a) State predition

x̂−(n) = Φx̂(n− 1) (2.14)(b) A priori error ovariane
P−(n) = ΦP (n− 1)ΦH + ΓΓ

Tσ2
v (2.15)2. Measurement update(a) Kalman gain:

K(n) = P−(n)HT (HP−(n)HT + σ2
w)

−1 (2.16)(b) State update
x̂(n) = x̂−(n) +K(n)(s(n)−Hx̂−(n)) (2.17)() A posteriori error ovariane

P (n) = (I −K(n)H)P−(n) (2.18)Where σ2
v and σ2

w are the varianes of the input and measurement noise respetively.The proess starts with x(0) = 0, and P (0) = 109I for the initial unknown stateerror ovariane matrix. Note that one the optimal Kalman gains are established,the omputational burden of the �ltering proess is redued only to Eqs. (2.14),(2.17), and the anti-rotation.2.4 Numerial Results2.4.1 Signal TestThe signal in (2.1) with the following amplitude and phase time funtions will betaken as signal test:
a(t) = a0 + a1 sin(2πfat) (2.19)



12
ϕ(t) = ϕ0 + ϕ1 sin(2πfϕt) (2.20)with the following parameters in amplitude: a0 = 1, a1 = 0.1, and fa = 5Hz, andphase: ϕ0 = 1, ϕ1 = 0.1, fϕ = 5Hz. And σ2

v = 0.01 and σ2
w = 10−4 whih orrespondsto a signal to noise ratio (SNR) of 37 dB, equivalent to the one produed by analogto digital onverter of 6 bits. In addition to white noise, the algorithms were testedwith pink noise [31℄ and basially the same error thresholds and behavior were found.It is worth mentioning that the IEEE standard of synhrophasors for power systems[9℄ does not ontain any spei�ation onerning the analog to digital onversion ofthe input signal in the phasor measurement unit [10℄ and less still any referene todi�erent types of noise.Zeroth-order ModelThe following are the results obtained with the zeroth-order trunation model Φ0whih orrespond to a zeroth-order Taylor polynomial.
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Figure 2.1: Signal (amplitude, per unit (pu)) and error estimation with zeroth-order signalmodel.As an be seen in Fig. 2.1, the Kalman �lter with the zeroth-order statetransition matrix provides good signal estimates. It ahieves signal estimation errors
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Figure 2.2: Amplitude and phase estimation using the zeroth-order signal model.in the order of magnitude of 10−5. Unfortunately our problem is not to estimatethe input signal but the phasor. The ideal amplitude and phase omponents of thephasor are shown in Fig. 2.2 in lines and point, while their estimates in ontinuouslines. Note that a lag and a lead, of about a quarter of a yle, are pereptiblein the amplitude and phase estimates, indiating the presene of a group delay inthe transfer funtion of the �lter. The estimates exhibit an undesirable orrugatedbehavior similar to the in�ltrations on the elebrated one-yle Fourier �lter (seeFig. 5 in [13℄). This behavior an be pereived with more larity in the omplexpath followed by the estimates as shown in Fig. 2.3. The Kalman gains are real andonverge to 0.9902 after the �rst three fundamental yles. Fig. 2.4 illustrates thebehavior of the total vetor error (TVE), whih is similar to the one in Fig. 10 in[13℄. As we an see, even if the Kalman �lter provides good signal estimates withthe zero-th order model, its phasor estimates are not as good as desired beause itsundesirable orrugation. In addition, with the zeroth-order model it is impossibleto estimate the speed or the aeleration of the phasor. In the next subsetion theimprovement of the estimates obtained with the Kalman �lter using the seond-ordersignal model is shown.
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Figure 2.3: Phasor omplex path (− line) and estimate(− · line and point) produed withthe zeroth-order signal model.Seond-order ModelOne the optimal Kalman gains are established it is possible to use the Kalman �lteras an observer with the following Eqs:
x̂−(n) = Φx̂(n− 1)and

x̂(n) = x̂−(n) +K(n)(s(n)−Hx̂−(n)).The following results are obtained with the seond-order model (Φ2), for whihthe state transition matrix is 6 × 6. We apply the same noise levels of the previousase, σ2
v = 0.01 and σ2

w = 10−4, and the same starting matrix ovariane matrix
P (0).It an be seen in Fig. 2.5 that the signal estimates are improved. With thismodel, the order of magnitude of the signal estimation error is redued by one. Theinrease in model order improves also the phasor estimates, whih are now loser tothe ideal amplitude and phase sequenes as an be seen in Fig. 2.6. It is apparentthat the orrugate e�et on the previous estimates has disappeared. The lead-lag



15

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Normalized time u=t/T
1

T
V

E
 (

%
)

Total Vector Error

Figure 2.4: Total vetor error ahieved with the zeroth-order trunated model.of the previous estimates have also disappeared, indiating that the phase responseof this �lter is zero �at about the fundamental frequeny. So, in this ase, theestimates have no amplitude or phase distortion, and therefore are instantaneous.The �utuation around 0 yle are due to the adaptive proess of the Kalman �lter,whih starts with free gains at the origin, but they are frozen when they arrive totheir �rst steady-state. The disappearane of the orrugation e�et an be on�rmedin Fig. 2.7, whih illustrates a smoother omplex path loser to the ideal one givenby the dots. Finally, Fig. 2.8, shows the behavior of the TVE, whih is redued bya fator of ten with respet to the previous ase.
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Figure 2.6: Amplitude and phase estimation with the seond-order signal model and theerror estimate.With the seond-order model it is possible to obtain estimates of the �rst phasorderivative as it an be seen in Fig. 2.9, in whih the �rst derivative of amplitude andphase are shown (solid lines) with their estimates (dashed lines). These derivativesorrespond to the amplitude speed of the osillation and to the frequeny o�set(with respet to the fundamental frequeny) respetively. It is apparent that theseestimates are not as smooth as the phasor estimates, due to their apparent waveringbehavior. However, these results are better than those shown in [28, Chapter 5,Fig. 5.17℄. The wavering e�et is most evident in Fig. 2.10, whih illustrates theerror of the estimates normalized by the peak values. Due to the fat that phasorderivatives ross through zero, TVE annot be applied. Instead, the normalized rmserror (NRMSE) of speed and frequeny o�set are alulated, and equal to 0.0332and 0.0560, respetively.
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Figure 2.7: Phasor omplex path (dots) and estimate(line) obtained with the seond-ordersignal model.
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19Signal estimation error is redued ten times more with the fourth-order model,however a slighter redution in TVE and NRMSE error level is ahieved by furtherinreasing the order of the signal model.The Kalman gain vetor of this example was taken from its �rst steady-stateperiod ourring at the end of the �rst fundamental yle. It was observed thatin the �rst �ve fundamental yles, the estimates behave like those shown in theprevious �gures, but after that interval of time degraded to a behavior very similarto that of the zeroth-order model. So the Kalman gain vetor of the �rst steady-state period, as it an be seen in Fig. 2.11 was frozen in the observer whose resultswere shown. The vetor gain for the �rst half of the state vetor is the following:
K = (0.99208− 1.6051i, 167.21− 406.19i, 8538.9− 4, 4603.0i)T . The seond half isthe omplex onjugate of the �rst one.
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Figure 2.9: Speed and frequeny estimates obtained with the seond-order signal model.
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21TVE RedutionIt is interesting to analyze the behavior of TVE when the sampling frequeny or theorder of the Taylor polynomial used in the signal model hange. Fig. 2.12 shows theroot mean square of the TVE in perent as a funtion of those parameters. The rmsis de�ned as:
rms(TV E) =

√

√

√

√

1

N

N
∑

n=1

TV E2
n (2.21)over the samples in an integer number of osillation yles. This is a good measureof the mean error level (given in %). As an be seen in that �gure, the error levelswith K = 0 are almost equal to those with K = 1; and also for K = 2, 3 and 4. Thisbehavior indiates that the quadrati Taylor element in the signal model is ruialfor reduing the error of the phasor estimates. These results indiate that the highestimation errors of the �lters for K = 0, 1 are mainly due to their phase distortion(delay). These �lters are unable to form a �at-null phase gain at the fundamentalfrequeny, in ontrast to those for K ≥ 2. This inability to form a �at-null gain isalso a shortoming of the Fourier �lter whih has a onstant delay. As the samplingfrequeny inreases, a �ner ontinuous shape emerge in the waveforms of the TVEerror, as those illustrated in Figs. 2.4 or 2.8. The slow error level augmentationat the higher sampling frequenies in the seond urve an be explained by a slightinrease in sensitivity to noise at those high frequenies. On the other hand, it wasalso observed that the estimates of the derivatives are improved when the order of theTaylor polynomial is inreased. In the K = 0, 1 ases, Kalman gains onverge quiklyto onstant values, however in the K = 2, 3, and 4, the gains have a steady-stateperiod, like the one illustrated in Fig. 2.11. All those Kalman observers used thegains ahieved at the enter of those steady-state periods, determined by a di�erentsample index, depending on the sampling frequeny, but almost the same for eahof the three di�erent orders.
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Figure 2.12: Root mean square of the TVE (in %) as a funtion of sampling frequeny(M = 2m samples per yle) and degree K of the Taylor polynomial.2.4.2 Magnitude and Phase Step EstimatesTo illustrate the transient response of the �lters, both magnitude and phase stepsof the benhmark tests in [9, Annexes G.2 and G.3℄ were mixed together in theanalyzed signal. Fig. 2.13 illustrates amplitude and phase transients of the phasorestimates obtained with the zeroth- and seond-order Kalman �lters from the testedsignal. These orrespond to the step response of the Kalman �lters and are formed bythe dominant poles of the orresponding transfer funtions. The zeroth-order �lterprodues long amplitude and phase swings, whih orrespond to a spiral trajetoryin the omplex plane entered at the �nal phasor value, as it an be seen in Fig.2.14. This transient lasts around twelve yles, indiating the presene of resonantpoles lose to the unit irle in the z plane. The seond-order �lter transient ismuh lower and shorter (around two-yles long) than the preeding one. Finally,the estimates of the phasor �rst derivative provided by the seond-order �lter areillustrated in Fig. 2.15. It is apparent that the magnitude and phase derivativetransient responses last again around two yles with large estimated values lose tothe origin, as it was expeted from the derivative of a step hanges. This high value



23is due to the amplitude and phase disontinuities at zero of the test signal, in whihthe Taylor model is not as appropriate as in the former ase of smooth amplitudeand phase �utuations.
0 2 4 6 8 10 12

0

0.5

1

1.5

2

A
m

pl
itu

de
 (

pu
)

Phasor Estimation

 

 
a(t)
K=0
K=2

0 2 4 6 8 10 12

0

1

2

3

Normalized time (Cycles)

P
ha

se
 (

ra
ds

)

 

 

φ(t)

K=0

K=2

Figure 2.13: Magnitude and phase estimates obtained with the zeroth- and seond-orderKalman �lter for the magnitude and phase step signal.
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Figure 2.14: Phasor trajetories of the zeroth- and seond-order �lters. The spiralorresponds to the estimates obtained with the zeroth-order �lter, and lasts twelvefundamental yles.2.4.3 Frequeny Step EstimatesFinally, the estimates of the frequeny step test (+5 Hz) in [9, Annex G.4℄ are shown.Fig. 2.16 shows the magnitude and phase estimates obtained with the ompared�lters. Note that both �lters have omparable performane in the phase estimatesbut not in the magnitude estimates. This disrepany is better understood in Fig.2.17 whih shows the phasor trajetory of the estimates in the omplex plane. Thezeroth-order �lter produes onsiderable magnitude error due to its yloid behaviorin the omplex plane. Finally, Fig. 2.18 shows the phasor derivative estimatesobtained with the seond-order �lter. Note that the frequeny estimates onvergeto the ideal frequeny step after two yles. A pereptible error is inevitable dueto the fat that the frequeny step signal moves away from the frequeny of therotation imposed to the signal model. The small swings after the seond yle areertainly due to the in�ltration of the negative fundamental omponent beause that
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Figure 2.15: Estimates of amplitude and phase �rst derivatives obtained with the seond-order Kalman �lter from the amplitude and phase step signal.omponent is seen from 65Hz at −130Hz. The gain around the negative frequenyis not zero �at for K = 0, and almost zero �at for K = 2, but in both ases theerror is pereptible. The period of suh an in�ltration would be of 130/60 = 2.1667yles per fundamental period, whih preisely orresponds to the period of the errorwave pereived in Figs. 2.16 and 2.18. However, more researh must be done forimproving the response of the derivative estimates before sharp transients.
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2.5 Experimental ResultsThe model used in this paper is based on a band-pass signal. In reality, power systemsignals may be polluted by harmonis or d o�set whih are not overed by this model(see Eqs. (2.10) and (2.11)). In this setion the proposed method is applied to apratial signal taken with a PMU from one substation. Fig. 2.19 illustrates thesignal as well as the level of estimation error ahieved with the zeroth- and seond-order estimator. This signal was sampled at 48 samples per yle. Beause it is asignal taken from one substation no further noise was added. Note that the signalestimation error is extremely low, on�rming that Kalman �lter is a very good signalestimator. The phasor (amplitude and phase) estimates as well as their derivativesare shown in Fig. 2.20. It is apparent that the estimates are noisy. This is due tothe presene of a �fth harmoni that in�ltrates the estimates aording to a spetralanalysis applied to the signal. One solution to this shortoming would be pre�ltering



28
−1 0 1 2 3 4 5 6 7 8 9 10

−5

0

5

10

A
m

pl
itu

de
 d

er
iv

at
iv

e 
(p

u/
s) First Phasor Derivative Estimation

 

 

−1 0 1 2 3 4 5 6 7 8 9 10
−5

0

5

10

Normalized time (Cycles)

F
re

qu
en

cy
 (

H
z)

 

 

a’(t) Estimate

φ’(t) Estimate

Figure 2.18: Estimates of amplitude and phase �rst derivatives obtained with the seond-order Kalman �lter from the frequeny step test signal.the signal with a bandpass �lter, but this osts a delay of one or two yles, plusthe additional omputation of a onvolution per sample. The best solution onsistsin extending the state transition matrix in (2.10) by inluding in its diagonal amatrix ψh
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Figure 2.20: Estimates of amplitude and phase with K = 0, 2 and their �rst derivativesobtained with the seond-order Kalman �lter from the test signal.
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Figure 2.21: Improved estimates without the �fth harmoni interferene.2.6 DisussionThe interest of phasor estimation, in the omputer relaying ontext, is muh moreplaed on signals with abrupt hanges than on signals under osillations. Thisemphasis explains why the one-yle Fourier �lter is the prototype of this partiularappliation, beause in a sudden hange it reahes good estimates from one statistate to the following one. It also explains that the synhrophasor standard [9℄, isup to now based on a stati phasor model, in a lear ontradition with the dynaminature of osillations. And even when it is applied reursively, its estimates inheritthat strong stati ondition.The dynami phasor is not dynami beause it is applied reursively, butbeause provided with a dynami signal model, it �ts better to �utuating signals.Under osillations, it is not the same series of stati phasor estimates than aseries of dynami ones. Estimates of the Fourier �lter are poor under osillationsbeause the higher derivatives of the osillation in�ltrate into its estimates, as it wasdemonstrated in the theoretial and pratial examples in [21, p. 808℄. A kind ofTaylor aliasing, in whih, the higher derivatives exluded by the signal model haveprojetions on the lower derivatives aepted in it, due to the non-orthogonality of



31Taylor terms.By extending its signal subspae to higher derivatives, the Taylor-Kalman�lter is able to follow smooth �utuations with better preision, by preventing thein�ltration of the derivatives inorporated into its signal model. Of ourse, beforeabrupt hanges, when muh more higher derivatives are signi�ant in the signalstate, the Taylor-Kalman �lter, as any dynami system, will be haraterized byits transient response. But between the subspae of the stati state (K = 0) andthe transient state (K = ∞), there is a series of subspaes that alloate muhmore room to the derivatives of smooth �utuations, o�ering better estimates. Thishapter disovers the advantages of the seond (K = 2) subspae with respet to thestati (K = 0) subspae.In our view, the main onlusions of this hapter are doing is to reate anew �eld of appliation for phasor estimation, muh more appropriate to PMUappliations. Its main ontribution is to provide a new theoretial instrument formeasuring the osillations of a power system, in onditions that overshoot the preiseboundaries of the relaying ontext.2.7 ConlusionsState transition matries are possible to represent Taylor approximations to theenvelope of a power osillation as a linear ombination of the dynami phasor and its�rst K derivatives. The Taylor-Kalman �lter an be applied to power signals underosillations to obtain muh better instantaneous estimates of the dynami phasor andits �rst derivatives, by its ability to follow smooth variations. The estimates ahievedwith the seond order model redue by a fator of ten the TVE error ahieved with thezeroth-order model (traditional Kalman �lter). The seond-order �lter is muh morestable than the zeroth-order with settling times in the transient responses around�ve times lower (from twelve yles to two yles). The seond-order �lter improvesalso the zeroth-order phasor estimates in osillations with frequeny o�set, withthe advantage of providing frequeny estimates together with the dynami phasorestimates. Despite the shortomings mentioned in the former setion, these resultsopen the way to new phasor estimation tehniques using other kind of observers. Theomputational omplexity of the estimator ould also be redued by exploiting thesymmetry of the omplex signal models. But the main advantage of these dynami



32phasor estimates, as ompared with the Fourier �lter ones is that, under osillations,they are instantaneous (no delay at all) while they preserve their synhrony.



Chapter 3Frequeny Response ofTaylorK-Kalman-Fourier Filter forInstantaneous Osillating PhasorEstimates
3.1 IntrodutionPhasor estimation under dynami onditions is an interesting researh area todaydue to the proliferation of synhrophasor appliations in wide area networks (WANs).It is also motivated by the inreasing need not only of dynami synhronized phasormeasurements during osillations, or severe system disturbanes, but also of thepower system frequeny and its rate of hange under those onditions. It is all themore important beause the synhrophasor standard is under review to inlude thepreedent dynami aspets to the stati signal model in whih its phasor de�nition[9,Setion 4.1℄ is based.Phasor estimation under dynami onditions was explored in [20℄-[21℄ using theweighted least square (WLS) method leading to the Taylor-Fourier transform, whihis more adequate under dynami onditions than the traditional Disrete FourierTransform (DFT), whih is appropriate only for periodi signals with onstantoe�ients. The estimates of this method however ontain a systemati delay. Inorder to solve this problem, the Kalman �lter was proposed in [32℄-[33℄ to estimateosilating phasors, onduting to an instantaneous phasor estimator under these33



34onditions. But in these works the frequeny response of the so alled TaylorK-Kalman �lter was not taken into aount. The purpose of this hapter is to showthose frequeny responses that help us to understand the behavior of the phasorestimates when the signals ontain noise or omponents not ontemplates into thesignal model. At the same time, their interpretation will give us to an extended�lter, the TaylorK-Kalman-Fourier �lter, that is able to perform the FFT or theTaylor-Fourier transform (TFT) with muh less omputation e�ort using the Kalmanalgorithm.In phasor measurement appliations the traditional Kalman �lter has been usedwith a stati signal model, i.e. assuming onstant frequeny, amplitude and phase.Its frequeny response has been obtained separately for eah state in [34℄, or forits real and imaginary parts in [27℄. Their interpretation in both ases is di�ultbeause, in the �rst ase, you need to think in terms of two �lters, and the proedureompliates when the number of states inreases; and in the seond ase, you obtaintwo frequeny responses, one for the real �lter and the other for the imaginary one.So it is di�ult to have an idea of the whole frequeny response of the omplex �lter.On the other hand, the problem with [35℄ is that the illustrated frequeny responsesare obtained without freezing the Kalman gains, so it is hard to understand what afrequeny response means in the ase of an adaptive �lter. Other papers refer to thefrequeny response of the Kalman �lter but in other appliations, suh as [36℄, whihmakes a ombination of the KF operating in the time domain and the Wiener �lter inthe frequeny domain; or [37℄ that uses its time-frequeny harateristis for trakingMultiple-Input Single-Output (MISO) systems for Orthogonal Frequeny-DivisionMultiplexing (OFDM) appliations; or [38℄, whih smooths the spetra obtainedthrough Fast Fourier Transform (FFT) with a Kalman �lter. Finally, in [39℄ thedesign of navigation systems with multi sensors is desribed using the ontinuoustime KF and lassial frequeny response tehniques, suh as Bode diagrams. Soompared to the abundane of referenes on Kalman �lter, the papers dealing withits frequeny response are rather sare, speially in our partiular appliation.The Taylor-Kalman �lter proposed in [33℄ is based on a state-spae signalmodel that inorporates derivatives of the omplex envelope of the osillation. Withthe advantage that it an estimate not only the phasor but also its derivatives. Itsfrequeny response helps to assess the behavior of its estimates when the input signalhas omponents not onsidered into the signal model. Its behavior in frequenies



35other than the fundamental one an be improved by inorporating them into itssignal model. We demonstrate here that it is possible to estimate the DFT or theTFT with the Taylor-Kalman-Fourier �lter, with the advantage of eliminating thedelays impliit in their �nite impulse response (FIR1) �lters.Our investigation was motivated by the fat that there were several optimalsolutions in phasor estimation suh as Weighted Least Squares (WLS), Kalman,Shanks, et. So our departing question was: what is the optimum optimorum fromthese methods? And our response now is that optimality depend basially on thesignal subspae built by the method. For example, the subspae of the WLS solutionis generated by vetors ontaining entered segments of the Taylor terms. Theyprodue antiausal FIR �lters. In the Shanks' ase, the subspae is formed by theautoregressive and moving average (ARMA) ausal vetors. The subspae of theTaylor-Kalman �lter is generated by the state vetor in the state-spae signal model,whih is also ausal. In the last two ases, the responses are not impliitly delayedas in the �rst one.The work in this hapter is based in the lassial Kalman �lter algorithm.Its main ontribution is to provide its frequeny response using the state transitionmatrix, and to show how it an be extended to the whole set of harmonis. Itdisusses how to do spetral analysis, inluding its derivatives, with the Kalman�lter algorithm, with muh less omputational ost than the traditional FFT.The hapter is organized as follows: in setion 3.2, the state spae signalmodel with its transition matrix and the Kalman �lter equations are established.In setion 3.3 the frequeny response of the TaylorK-Kalman �lters are establishedand illustrated. Its extension to the full set of harmonis leads to the TaylorK-Kalman-Fourier �lter in setion 3.4, in whih its frequeny response and numerialperformane are ompared with those of the FFT. Finally, phasor estimates of anosillation with harmonis are disussed in setion 3.5.3.2 Signal Model and Kalman FilterThe signal model of the TaylorK-Kalman �lter omes from the Taylor approximationto the bandpass signal model proposed in [19℄ for power system osillations. ItsKalman �lter implementation was developed in [33℄. In this setion we make a1Finite Impulse Response.



36referene to the algorithms illustrated in the previous setions 2.2 and 2.3.3.3 Taylor-Kalman �lter Frequeny ResponseThe frequeny response of the Taylor-Kalman �lter an be obtained through the ztransform of its update state equation
x̂(n) = Φx̂(n− 1) +K(n)(s(n)−HΦx̂(n− 1)) (3.1)with the steady-state Kalman gains in K. The z-transform of (3.1) is
x̂(z ) = Φz−1x̂(z ) +K(s(z)−HΦz−1x̂(z)), (3.2)and solving for x̂(z) we have
[

I −Φz−1 +KHΦz−1
]

x̂(z) = Ks(z) (3.3)So the transfer funtions between the states of the signal model and the input signalis given by
G(z) =

[

I + (KH − I)Φz−1
]

−1
K, (3.4)and the frequeny responses of the state �lters are obtained evaluating the transferfuntions in G(z) at z = ejθ, for −π < θ ≤ π.3.3.1 Signal TestTo obtain the Kalman gains of the �lters, a signal test of the form in (2.1) is builtwith the following amplitude and phase funtions:

a(t) = a0 + a1sin(2πfat) (3.5a)
ϕ(t) = ϕ0 + ϕ1sin(2πfϕt) (3.5b)and the following parameters: a0 = 1, a1 = 0.1, and fa = 5Hz, for the amplitude;and ϕ0 = 1, ϕ1 = 0.1, fϕ = 5Hz for the phase. We also use the following parametersfor the Kalman �lter: σ2

v = 0.01 and σ2
w = 10−4, whih orresponds to a signal tonoise ratio (SNR) of 37 dB.



373.3.2 Taylor0-Kalman Filter Frequeny ResponsesIn Fig. 3.1 the frequeny responses of the Taylor0-Kalman �lter are shown fordi�erent sampling frequenies. Note that they are asymmetrial, indiating theypertain to omplex �lters. It is easy to see that when the input signal orresponds toa steady-state signal, it works appropriately with a gain equal to two at the positivefundamental frequeny and zero at the negative one. They exhibit a resonane atthe null frequeny, indiating the presene of a pole lose to z = 1 in the transferfuntion. The pole approahes more and more to one as the sampling frequenyinreases. It is well known that Kalman �lter does not work appropriately whenthe input signal does not orrespond to its signal model. In this ase, the signalmodel orresponds to a rotatory signal with two omponents, one rotating at thefundamental frequeny, and the other ounter rotating. So the �lter fails to extrata phasor from a onstant signal, due to its non rotatory nature. The phase response isnot zero �at at the fundamental frequeny indiating a small delay in the estimates.
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Figure 3.1: Frequeny responses of the Taylor0-Kalman �lter at di�erent samplingfrequenies.The magnitude response of the Taylor0-Kalman �lter illustrated in Fig. 3.1 is
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Figure 3.2: At the top, magnitude responses of Real and Imaginary parts of the Kalman�lter as illustrated in [34℄ and at the bottom magnitude response of the omplex gain.equivalent to the one analyzed in [34, p. 103℄. In that ase, the variables of thestate vetor are the real and imaginary parts of the phasor. Using the parametersprovided in that paper, we were able to reprodue the magnitude responses of the realand imaginary state variables in the top graph of Fig. 3.2. Note the similitude withthose illustrated in Figs. 12-15 in [34℄. The magnitude response (of the omplex gain)built from the preedent ones is shown at the bottom. Note that it orresponds to aTaylor0-Kalman �lter, but with its resonane slanted to the right, due to the di�erentparameters of the examples. This orresponds also to the Kalman �lter developedin [11, p. 102℄. In that publiation, it is demonstrated that before unknown initialonditions, and onstant error ovariane, Kalman �lter estimates orrespond exatlyto those of the half-a-yle Fourier �lter. Sine then, Kalman �lter was silened inthe area of phasor measurement. However, note how di�erent is the Kalman �lterfrequeny response from that of the Fourier �lter, whih has the shape of a ardinalsine funtion. They only oinide in the two and zero gains at the positive andnegative fundamental frequenies, respetively.The resonane at the null frequeny an be resolved by adding a zero at z = 1.
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Figure 3.3: Magnitude responses of the Taylor0-Kalman-d �lter for di�erent samplingfrequenies.This is ahieved introduing a d omponent to the rotatory signal model:
Φ =









1 0 0

0 ψ1 0

0 0 ψ̄1









, h =
(

1 1
2

1
2

)

. (3.6)Note in Fig. 3.3 that its magnitude response has now a zero gain at the null frequeny.In addition a lowpass �lter is obtained from the �rst state variable (d), its magnituderesponse is illustrated in Fig. 3.4. Note that it behaves as a low pass �lter due toits �at gain at null frequeny. These kind of �lters are used in teleommuniationsto detet when the frequeny of a signal goes out of a given interval.3.3.3 Taylor2-Kalman Filter Frequeny ResponseThe Taylor2-Kalman �lter provides not only estimates of the phasor but also of thetwo �rst derivatives. Fig. 3.5 shows the magnitude and phase response of the phasorestimator �lter. Note the �at gains around the fundamental frequenies (positive andnegative). The �lter exhibits again a resonane frequeny lose to the null frequeny
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Figure 3.4: Magnitude responses of the d �lter for di�erent sampling frequenies.and has high gains at harmoni greater than one. So the �lter works well only whenthe signal spetrum is on�ned into the intervals under the �at gains. The mainfeature of this �lter is in its phase response. Note the null phase in the intervalaround the fundamental frequeny, it means that the phasor estimates of this �lterare instantaneous, i.e. without any delay when the spetrum of the osillation isthe bandpass signal assumed in our signal model. The abrupt phase hange in thenegative fundamental frequeny is insigni�ant due to the null gain in that interval.3.4 TaylorK-Kalman-Fourier FilterThe preedent Taylor2-Kalman �lter ahieves ideal di�erentiator gains only aroundthe fundamental frequeny. To obtain those gains about every harmoni, thetransition matrix of the signal model needs to be extended to all the harmonisof interest. For example, if the signal is sampled at N = 2ℓ samples per period, andall of the harmonis are to be inluded, then the extended transition matrix is of the
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Figure 3.5: Frequeny response or T2-K �lter for several sampling frequenies.form
Φ(τ) =















ΦK(τ)ψ0

ΦK(τ)ψ1 . . .
ΦK(τ)ψN−1















(3.7)The extended matrix is (K+1)N×(K+1)N ; however, the omputational ostof alulating a state transition is not [(K+1)N ]2, but (K+1)(K+2)N/2 due to itsdiagonal nature, and the superior triangular form ofΦK. This redution is importantbeause one the Kalman gains are established, the �ltering algorithm is performedonly with the state predition (2.14) and the state update (2.17) equations. Thevetor H of the output equation (2.13), for K = 2, is of the form
H =

1

2

[

2 0 0 1 0 0 · · · 1 0 0
]

. (3.8)so it requires only N produts to estimate the signal from the state vetor. So theomputational ost of the whole �ltering algorithm is (K + 1)(K + 2)N/2 + 2N .For example, for K = 0, it is 3N , and for K = 2, 8N . Comparing them with theost of an FFT of a signal with N samples, whih is ( log2(N)
2

N), we an see thatTK-K-F �lter is muh more lower than the FFT. In the next setion, we show that



42when all the harmonis are inluded into the model, the frequeny responses of theT0-K-F is the same of the DFT, and that of the T2-K-F �lter, the same of the T2-Ftransform without delay. So the T0-K-F �lter implementation is a faster algorithmto do harmoni analysis than the famous FFT.3.4.1 Taylor0-Kalman-Fourier FilterOur �rst example is the Taylor0-Kalman-Fourier �lter for a sampling frequeny of
N = 16 samples per yle. Its transition matrix is a diagonal matrix with thephase rotating fators {ψk, k = 0, 1 . . . , 15} desending through the diagonal. Itsfrequeny response is plotted in Fig. 3.6 together with the frequeny response ofthe one-yle Fourier �lter. Note that they are exatly the same, and indiatesthat the Taylor0-Kalman-Fourier (T0-K-F) allows the alulation of the DFT withthe Kalman algorithm. Note in its phase response that estimates of the Taylor0-Kalman-Fourier will have exatly the same delay as those of the one-yle Fourier�lter, whih is a half a yle.
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Figure 3.6: Frequeny response to the T 0 −K − F �lter.



433.4.2 Taylor2-Kalman-Fourier FilterThe seond example is the Taylor2-Kalman-Fourier �lter. Now its transition matrixhas in its diagonal the submatrix Φ2 multiplied by the phase rotating fators
{ψk, k = 0, 1 . . . , 15}.Fig. 3.7 shows the magnitude and phase response of the T2-K-F �lter of the�rst harmoni. The magnitude appears together with the response of the one-yleFourier �lter to appreiate the transformation due to the hange from the zero totwo in the order of the Taylor polynomial. The omb �lter is transformed intoa fene �lter, i. e. a �lter that extrats one osillating harmoni, rejeting therest of harmonis. Note that despite of the widening and inrease of the mainlobeand sidelobe levels, the gains in the harmoni bands improve a lot beause of their�atness. Those gains improve the �ltering by avoiding the magnitude and phasedistortion at the harmoni of interest and by having a better rejetion of the restof harmonis. Note in the phase response that the phase under the passband isa zero �at, indiating no delay in the phasor estimates. This means that phasorestimates an be truly synhronized with a time stamp in the nanoseond sale. Ahuge advantage of these estimates, extremely useful for ontrol appliations. In thenext setion we demonstrate this fat in a numerial example. With the seond-order Taylor signal model is also possible to obtain estimates of the �rst and seondderivatives of the osillation. Fig. 3.8, shows the magnitude responses for the �rstand seond phasor derivatives respetively. Note that lose to the fundamentalfrequeny the magnitude responses exhibit the ideal di�erentiator gains (line andparaboli shapes).Before going to the numerial example, a few words about subspaes. Thedevelopment of the TaylorK-Kalman-Fourier �lter by inluding one by one the full setof harmonis shows that the subspae of the Taylor0-Kalman �lter, whose frequenyresponse is illustrated in Fig. 3.1, grows little by little until reahing the full Fouriersubspae, with the frequeny response illustrated in Fig. 3.6; or that of the Taylor2-Kalman �lter in Fig. 3.5 with that of Fig. 3.7. That is why it is possible to performthe DFT with the T0-K-F, and T2-F transform with the T2-K-F �lter, without thedelay of the FIR �lters.
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Figure 3.7: Frequeny response to the T 2 −K − F �lter.3.5 Numerial ResultsIn this setion we test the T0-K-F and the T2-K-F �lters with an osillatory signalto whih a 3rd and 5th harmonis are added at a ertain instant of time. The signalis sampled at N = 64 samples per fundamental yle. The performane on phasorestimation of those �lters using N = 64 harmonis is analyzed.Test Signal
s(t) = a(t)cos(2πf1t+ ϕ(t))

+u(t)
[a(t)

10
cos(2π3f1t + ϕ3(t))

+
a(t)

20
cos(2π5f1t+ ϕ5(t))

] (3.9)
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Figure 3.8: Magnitude response of the �rst and seond di�erentiators assoiated with theT2-K-F �lter.where
u(t) =







0, for t < 15/f1

1, for t ≥ 15/f1
(3.10)

a(t) = a0 + a1sin(2πfat) (3.11)
ϕ(t) = ϕ0 + ϕ1sin(2πfϕt) (3.12)
ϕ3(t) = 0.9ϕ(t) (3.13)
ϕ5(t) = 0.8ϕ(t) (3.14)and the following parameters in amplitude: a0 = 1, a1 = 0.1, fa = 5Hz; and phase,

ϕ0 = 1, ϕ1 = 0.1, fϕ = 5Hz. The noise varianes in the Kalman �lter are: σ2
v = 0.01and σ2

w = 10−4.The test signal and its estimates are illustrated in Fig. 3.9. As you an seein (3.10), the injetion of the harmonis starts at the 15th yle. Signal estimatesare very good for both �lters, that is why no di�erenes between the three urvesare pereptible. It is well known that Kalman �lter is good when the input signalorresponds to its model. The estimation error (bottom graph) indiates however a
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Figure 3.9: Signal and error estimates.higher error for the T0-K-F �lter with an important transient immediately after theharmoni injetion instane. But we are using Kalman �lter to estimate not the inputsignal but its phasor. In the left olumn of Fig. 3.10, the phasor estimates obtainedwith both �lters are shown. The T0-K-F �lter produes estimates with a pereptibleorrugated shape, and delayed half a yle from the smother estimates obtainedwith the T2-K-F �lter. These estimates are loser to the ideal phasor, exept atthe transient ourring immediately after the injetion of the harmonis, due to thedisontinuity of their step hange when they appear. This is a very important result,that shows that the zero Taylor polynomial model is unable to suppress the delayin the estimates, and the seond order Taylor polynomial together with the Kalman�lter algorithm produes instantaneous estimates that an be truly synhronizedwith a preise time stamp. Finally, the �rst derivative estimates obtained with theseond order Taylor �lter are shown in the right olumn of Fig. 3.10. These estimatesare not so good as the phasor estimates but they ould be improved by using a modelof higher order.
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Figure 3.10: At the left, phasor estimates with the zeroth and 2nd order Taylor modelsand at the right �rst derivative estimates with K = 2.3.6 ConlusionsFrequeny responses of the TaylorK-Kalman �lter developed in the �rst part ofthe hapter indiate that this �lter is very sensitive to noise and that its goodperformane in phasor estimation depend on the onurrene of the input signal withits signal model. The extension of the signal model to the full set of harmonis leadto the TaylorK-Kalman-Fourier �lter. It was shown that Taylor0-Kalman-Fourier�lter has the same performane in harmoni analysis as DFT, but with muh lessomputational burden, even than in its FFT implementation. On the other hand, theTaylor2-Kalman-Fourier �lter is a fene �lter able to perform in real time the Taylor2-Fourier transform, but with muh less omputational e�ort; and most importantly,without delay. The inlusion of a seond order Taylor polynomial in the signalmodel ahieves a �at magnitude and phase response about every harmoni produingharmoni osillating phasor estimates without magnitude or phase distortion (nodelay). These instantaneous estimates an be truly synhronized to the miroseondtime sale, and therefore are very useful for ontrol appliations of the power system.



Chapter 4TaylorK-Kalman-FourierDi�erentiators for InstantaneousDerivative Estimates
4.1 IntrodutionDigital di�erentiators are very useful in signal proessing, monitoring [40℄-[42℄, andontrol [43℄-[45℄ appliations. In some appliations derivatives are more importantthan the signal itself. Suh is the ase, for example, of the speed estimator of a targetin a radar, or the estimation of the frequeny variations on a power system underosillations. One of the most popular implementations of digital di�erentiators isusing a �nite impulse response (FIR) �lter [46℄. The problem of estimates obtainedwith linear phase FIR �lters is that they have inevitable delay, by half the length ofits impulse response. Suh is the ase of the Parks-MClellan implementation [47℄,or the �lter bank of maximally �at di�erentiators reently proposed in [48℄.Other well known FIR implementations an be found in [49℄, in the ase oflow-pass �lters designed with the maximally �at riterion, or [50℄ -[54℄ in the aseof full-band di�erentiators. In [55℄ digital linear-phase di�erentiators are designedbased on a relationship between the oe�ients of a digital di�erentiator and those ofthe generi frational delay �lter. And �nally, in [56℄, the interrelationships betweenthe digital di�erentiator, the digital Hilbert transformer (DHT), and the half-bandlow-pass �lter are established.Even if a systemati delay is not a problem in ommuniations appliations,48



49whih are always delayed at least one symboli period, this anomaly exlude the FIRimplementation from ontrol appliations, due to the potential instability provokedby a delay in the ontrol loop. In this ase, instantaneous estimates are preferable.This is ahieved with digital di�erentiators implemented with in�nite impulseresponse (IIR) �lters. These �lters use muh less oe�ients than the equivalentFIR �lters, but they have non-linear phase response, beause they are ausal or timeasymmetrial. This means they produe phase and amplitude distortion. Suh is thease of the full-band IIR di�erentiators designed in [57℄ based on the formulation ofa generalized eigenvalue problem using the Remez multiple exhange algorithm, orthe low-pass IIR digital di�erentiators in [58℄, whose numerators have a predominantlinear phase, at least over the frequeny interval of operation.Observers an be lassi�ed as another kind of digital di�erentiators, even ifthey also provide IIR �lters. The problem with observers of dynami systems isthey estimate the state spae variables of a dynami system, whih not neessaryoinide with the derivatives of the output signal of interest. One of the most ommonobservers is the Kalman �lter. In [59℄ the onditions for obtaining the �rst derivativesof a dynami system with the Kalman algorithm when the state spae equationsof the system are known. This method ahieves an optimum di�erentiator, whihobtains the minimum variane unbiased estimates of the �rst derivatives in the statevetor of a known dynami system.In this work, we present other set of optimum digital di�erentiators that donot require at all a priori knowledge of any dynami system. Instead, the Kalmanalgorithm is applied to approah a signal with its Taylor signal model, expressed by astate transition matrix that depends only on the sampling time, and the desired orderof the Taylor polynomial. The subspae generated by this signal model is similar tothe one developed in [48℄. But instead of obtaining the derivative estimates throughthe least squares (LS) method, whih leads to FIR �lters, we use the Kalman �lter toprojet the input signal into the Taylor signal model subspae. We are going to showthat for Taylor orders greater than, or equal to two, the ahieved frequeny responsesare very lose to those of the ideal di�erentiators on the frequeny baseband, whihin turn means instantaneous and undistorted estimates, provided the spetrum ofthe input signal be on that band. The �lters ahieved with this method are referredto as TaylorK-Kalman (TK-K) �lters. Their problem is that they have lateral highgains, or high sensitivity to noise. But that gain an be mitigated by extending



50the signal model through the inlusion of harmoni omponents. This extendedsolution leads to the TaylorK-Kalman-Fourier (TK-K-F) �lters proposed in [33℄ forinstantaneous osillating phasor estimates. With this method is possible to estimatethe digital Fourier transform (DFT) with the Kalman Algorithm using a zeroth-order Taylor polynomial, with muh less omputational e�ort than that of thefast Fourier transform (FFT). It is also possible to estimate the TaylorK-Fouriertransform proposed in [21℄ by inreasing the order of the Taylor polynomial.The main goal of our investigation was to �nd an unifying theory for obtainingthe best derivative estimator through the many options available today: leastsquares, Kalman �lter, maximum likelihood, et. Our initial question was to �ndthe best among the best, or the optimum optimorum. Here, we use the traditionalKalman algorithm. So, our main ontribution onsists in expressing the Taylor signalmodel in terms of a state transition matrix, so the traditional Kalman algorithm anbe applied over one, or the whole set of harmoni frequenies. And, of ourse, to�nd a method able to provide instantaneous and undistorted estimates of the �rstderivatives of a signal, provided its spetral load be over the frequeny intervalsunder �at magnitude and phase response of the di�erentiators.The spetral ondition of the di�erentiator ideal operation orresponds toosillating signals. The derivative estimates are good in time intervals where theosillation is smooth and without disontinuities. We develop the frequeny responseof the �lters to assess the behavior of the estimates when the signal ontainsdisontinuities or noise. The order of the Taylor polynomial an be inreased, butthere is a limit imposed by the size of the sampling time, beause the elements ofthe state transition matrix are integer powers of this parameter, so for high samplingfrequenies, they vanish. But with an order of three it is already possible to estimateposition, speed and aeleration.The hapter is organized as follows: in setion 4.2 shows the TaylorK-Kalman di�erentiators, the state spae signal model by di�erentiators is de�nedand the frequeny responses of the TaylorK-Kalman di�erentiators, in setion 4.3the mitigation of the high gain with the low-pass TaylorK-Kalman di�erentiator isillustrated. In setion 4.4 the TK-K-F �lter is developed and an example of frequenyresponse is illustrated. Finally in setion 4.5 the main results using a seond-orderand third-order di�erentiators are presented and disussed.



514.2 TaylorK-Kalman Di�erentiatorsIn this setion we develop the three omponents of the TaylorK-Kalmandi�erentiators. First, we introdue the Taylor signal model represented in statespae equations. Its state transition matrix makes possible the use of the Kalmanalgorithm. Finally, we develop the equations for obtaining the frequeny responses.4.2.1 Taylor Signal modelLet s(t) be a signal with up to its Kth derivative ontinuous in the time interval
T = {t : |t − t0| < Tm}, with Taylor interval of size Tm. It is always possible toapproah it in that interval by a Kth-order Taylor polynomial entered at t0:

sK(t) = s(t0) + ṡ(t0)(t− t0) + . . .+ s(K)(t0)
(t− t0)

K

K!

t0 −
Tm
2

≤ t ≤ t0 +
Tm
2

(4.1)By suessively di�erentiating sK(t) in (4.1) as follows:
sK(t) = s(t0) + ṡ(t0)τ + s̈(t0)

τ 2

2!
+ . . .+ sK(t0)

τK

K!

ṡK(t) = ṡ(t0) + s̈(t0)τ + . . .+ sK(t0)
τK−1

(K − 1)!
(4.2)... ...

s
(K)
K (t) = s(K)(t0)with τ = t− t0. And by de�ning the state vetor sK(t), with the �rst K derivativesof the Taylor signal model sK(t), we see that (4.2) an be written in matrix form as:

sK(t) = ΦK(τ)sK(t0) (4.3)in whih ΦK(τ) is the state transition matrix between t0 and t:
ΦK(τ) =



















1 τ τ2

2!
. . . τK

K!

1 τ . . . τK−1

(K−1)!

1 . . . τK−2

(K−2)!. . . ...
1



















. (4.4)



52note that is the same matrix in 2.6 but without the phase rotation fator ψ1.Under this representation, the Taylor signal model is then given by:
sK(t) = hTsK(t) (4.5)where hT =

[ 1 0 . . . 0 ], with K zeros.Finally, assuming t0 = (n− 1)T and t = nT , where T is the sampling period,we have the following disrete state transition equation:
sK(n) = ΦK(T )sK(n− 1) (4.6)In the next setion, we show how these signal model an be used in the Kalman�lter to estimate the derivatives ontained in the state vetor from a given signal.One the Kalman �lter reahes its steady-state gains, it will deompose the inputsignal s(t) into the state-vetor omponents of the signal model sK(t).4.2.2 Di�erentiator Frequeny responsesThe frequeny response of the Taylor-Kalman �lter an be obtained through the ztransform of its update state equation

x̂(n) = Φx̂(n− 1) +K(s(n)−HΦx̂(n− 1)) (4.7)with the steady-state Kalman gains in K. The z -transform of (4.7) is
x̂(z ) = Φz

−1x̂(z ) +K(s(z )−HΦz
−1x̂(z )), (4.8)and solving for x̂(z ) we have

[

I −Φz−1 +KHΦz−1
]

x̂(z) = Ks(z). (4.9)So the transfer funtions between the states of the signal model and the input signalare given in the following polynomial vetor:
G(z ) =

[

I +
(

KH − I
)

Φz−1
]

−1
K (4.10)and the frequeny responses are obtained evaluating G(z ) at z = e

jθ, for −π ≤ θ ≤

π.



534.2.3 Taylor2-Kalman Di�erentiator Frequeny responseFig. 4.1 shows the magnitude and phase responses of the zeroth derivative (position)estimates of the T2-K di�erentiators. The responses are shown for di�erent samplingfrequenies measured in samples per fundamental period, assuming a fundamentalfrequeny of f1 = 50Hz. Note that both responses are �at about the nullfrequeny, orresponding to the gain of an ideal signal estimator. If the spetrumof the input signal is on�ned under the �at frequeny response, approximately
0.2f1 = 10Hz, then the �lter will not distort the signal, neither in magnitudenor in phase. This means that, provided the signal spetrum be on�ned in theideal operation frequeny band, the estimates are not delayed (instantaneous) orattenuated at all. The magnitude response of the �rst and seond derivative (speedand aeleration) estimators are shown in Fig. 4.2. Note again that, in theneighborhood entered at the zero frequeny, they have the gains of the orrespondingideal di�erentiator, diverging with high onstant values outside the ideal operationband. The orresponding phase responses are shown in Fig. 4.3. They also approahthe ideal di�erentiator phase responses (jω and (jω)2) lose to the null frequeny.There, they approah a Sign funtion of size π and 2π in frequeny orrespondingto the j and j2 fators. So, derivative estimates are also instantaneous. Then, theyoperate as ideal di�erentiators when the input signal spetrum is on�ned inside theideal operation frequeny band. In the time ounterpart, it means that they operateas ideal di�erentiators when the input signal is lean of noise and su�iently smoothas to be approahed with enough preision by a seond-order Taylor polynomial.4.3 Low-Pass TaylorK-Kalman Di�erentiatorOne way to mitigate the high gains of the TK-K di�erentiator onsists in extendingthe transition matrix in (4.4) by inluding a new angular frequeny omponent at ejπ,orresponding to the half-band frequeny. The inorporation of the �rst derivativesof the omplex envelope at this frequeny will be seen from the d omponent (ej0)as an extration, so the gain of the low-pass di�erentiators will go down in thehalf-band. These �lters will be referred to as low-pass TaylorK-Kalman (LP TK-K)di�erentiators . The new transition matrix will be:

Φ(T ) =

(

ΦK(T )

ΦK(T )e
jπ

) (4.11)
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Figure 4.1: Magnitude and phase response of the zeroth T2-K di�erentiator. The frequenyresponse is �at around the null frequeny.
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Figure 4.2: Magnitude response of the �rst and seond T2-K di�erentiators. Note thelinear and paraboli gains around the null frequeny.with the following state transition equation
sK(n) = Φ(T )sK(n− 1) (4.12)and the signal model

sK(n) = HsK(n) (4.13)whereH = (hT hT ), beause sK(t) ontains now also the derivatives of the half-bandfrequeny.Fig. 4.4 shows the frequeny response of the zeroth ompensated di�erentiator.Note that now the gain goes down to a �at zero at the halfband frequeny, whilethe �at frequeny response lose to the null frequeny is preserved. This e�etappears ompletely illustrated only for the ase of the lower sampling frequeny, butit happens for all. The same holds for the �rst and seond di�erentiator frequenyresponses illustrated in Figs. 4.5 and 4.6.In the next setion, the transition matrix will be extended to the whole set ofharmoni frequenies to obtain the TK-Kalman-Fourier di�erentiators.
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Figure 4.3: Phase response of the �rst and seond T2-K di�erentiators. Close to the zerofrequeny, they have the ideal phase responses (jω, and (jω)2).
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Figure 4.4: Magnitude and phase response of the zeroth LP T2-K di�erentiator.
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Figure 4.5: Magnitude response of the �rst and seond LP T2-K di�erentiators.
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Figure 4.6: Phase response of the �rst and seond LP T2-K di�erentiators.



594.4 TaylorK-Kalman-Fourier Di�erentiatorsThe state transition matrix an be extended to the full set of harmoni frequenies.These di�erentiators will be referred to as TaylorK-Kalman-Fourier di�erentiators,beause they an estimate the �rst derivatives of the omplex envelope at eahharmoni frequeny. This bank of �lters was �rst proposed in [33℄ and an alsobe seen as a Taylor extension of the digital Fourier transform (DFT).The extended state transition matrix is now:
Φ(T ) =















ΦK(T )

ΦK(T )ψ
1 . . .

ΦK(T )ψ
N−1















(4.14)with ψ = ej
2π

N for a sampling frequeny of Nf1. The size of the state transitionmatrix is (K + 1)×N . The state vetor ontains the derivatives of the whole set ofharmonis and its output vetor is:
H =

[

hT
1 hT

2 . . . hT
N

]

. (4.15)with a size of 1 × (K + 1)N , therefore N row vetors de�de by hT = [1 0 . . . 0],with K zeros.The magnitude response of the T2-K-F di�erentiators inluding 32 harmonisis shown in Fig. 4.7. Note that now the gain of all the di�erentiators goes down asthe frequeny inreases, ensuring full rejetion with �at null gain at every harmonifrequeny. The phase responses are illustrated in Fig. 4.8. It an be seen thatideal phase responses are preserved around the null frequeny. The illustrated aseorresponds to a sampling frequeny of 32 samples per yle. But the main advantageof the estimates is that they are instantaneous, as it an be on�rmed by the phasesresponses lose to the zero frequeny.Another advantage of this �lter bank is that the �rst derivatives of the full setof harmoni frequenies an be obtained at one. If the signal spetrum is on�ned inthe ideal operation interval, then the di�erentiators operate a digital transformation,mapping the signal into the �rst derivatives of the omplex envelope of eah harmonifrequeny. In the next setion we onsider numerial examples.
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Figure 4.7: Magnitude response of the �rst three TaylorK -Kalman-Fourier di�erentiatorsfor K = 2, 3, and 32 harmonis. Note that ideal di�erentiator gains are ahieved about nullfrequeny and full rejetion about harmoni frequenies.
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Figure 4.8: Phase response of the �rst three TaylorK -Kalman-Fourier di�erentiators for
K = 2, 3, and 32 harmonis. Close to the zero frequeny, they have the ideal phase responses(jω, and (jω)2).
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Figure 4.9: Signal, speed and aeleration estimates obtained with T2-K di�erentiators.4.5 Numerial ResultsIn this setion we test the TK-K Di�erentiators with the following signal
s(t) = 1− e−t/2cos(t) (4.16)sampled with N1 = 64 samples per fundamental yle. It is assumed that the signalis a�eted with additive white Gaussian noise (WGN) at the input of the stateequations and at the output equation, with σ2

v = 0.01 and σ2
w = 10−5 respetively.The results are obtained with the seond and third TK-K di�erentiators.4.5.1 TaylorK-Kalman Di�erentiatorsThe derivative estimates obtained with the seond-order (T2-K) di�erentiators areshown in Fig. 4.9. It is apparent that the signal estimate and the �rst derivative arevery lose to the orresponding expeted signals, but in the ase of the aelerationestimates, noise is pereptible.The estimates obtained with the T3-K di�erentiator are shown in Fig. 4.10.We an see that the aeleration estimates are quite improved. It is rare to see
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1Figure 4.10: Signal, speed and aeleration estimates obtained with T3-K di�erentiators.aeleration estimates as these. Derivatives estimated with �nite di�erene equationsare very sensitive to noise.4.5.2 Low-Pass TaylorK-Kalman Di�erentiatorsThe results obtained with the Low-Pass (LP) TK-K di�erentiators are shown inFig. 4.11 for K=2. It is apparent that they are better than those obtained withouthalfband gain mitigation. The estimates obtained with the LP T3-K di�erentiatorsare illustrated in Fig. 4.12. These di�erentiators an also obtain the third derivative,but they are not shown here.4.5.3 TaylorK-Kalman-Fourier Di�erentiatorsFinally we present the estimates obtained with the TK-K-F di�erentiators for K = 2and 3, inluding 32 harmonis. The results are illustrated in Fig. 4.13. Note thatthey are very lose eah other. The transient at the beginning is due to the timeneeded to reah the permanent Kalman gains. It an be seen that the noise in theestimates has almost disappeared. It was observed that the transient response of
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Figure 4.14: At the top, amplitude (ontinuous line) and derivative (dash line)instantaneous estimates of a swing urrent (in dots) in a power system at 50Hz. At thebottom, the instantaneous phase (ontinuous line) and frequeny (dashed line) estimatesof the same signal. Those estimates were obtained with the T2-K-F di�erentiators.is overloaded. Abrupt hanges in phase our at zero amplitude instants, and areestimated by frequeny (phase derivative) peaks. Note that amplitude and phaseestimates are able to detet and measure the frequeny peak ourring about 2.5s.In this ase, we illustrate the estimates of the �rst harmoni, but they are availablefor the whole set of harmonis, So, the T2-K-F di�erentiators work as an extendedspetrum analyzer of the signal.4.6 ConlusionsInstantaneous derivative estimates were obtained with the TK-K-F di�erentiators byapplying the Kalman algorithm to a Taylor-Fourier signal model expressed in a statetransition matrix. Several design possibilities were o�ered depending of the expetedspetral load of the input signal. They perform as ideal di�erentiators with osillatingsignals. Di�erentiator pass-bands and stop-bands an be adapted to the frequeniesof interest, when they are known. They an be interpreted as an extension of the



67DFT, and of the Taylor-Fourier transform, for K > 0, with muh less omputationalburden than that of the FFT. They an be used as simple di�erentiators on thebaseband, or as spetral analyzers of osillating periodi signals, estimating notonly the standard spetrum (amplitude and phase at eah harmoni), but also theirorresponding derivatives. In ontrast to FFT, they provide instantaneous derivativeestimates, very useful for ontrol or synhronized monitory appliations.



Chapter 5ConlusionsThe new state transition matries built with Taylor approximations to the dynamiphasor it is possible to obtain better instantaneous phasor estimates and itsderivatives under osillation onditions through the Taylor-Kalman-Fourier �lter.The estimates ahieved with the seond order model redue by a fator of tenthe TVE error and are muh more stable than those obtained with the traditional(zeroth-order) Kalman �lter, with settling times �ve times lower. The extension ofthe signal model to the full set of harmonis was neessary to redue the high noisesensitivity to the TaylorK-Kalman �lter. With the Taylor0-Kalman-Fourier �lter itis possible to obtain the DFT Fourier oe�ients of the signal. For orders greater orequal to two, the TaylorK-Kalman-Fourier �lters o�er �at null phase response aroundharmoni frequenies. This means that their Fourier estimates are instantaneous (nodelay at all). It is also possible to estimate the �rst derivatives of the osillation.Finally, they an also be used as spetral analyzers of osillating periodi signals.The following onlusions an be drawn from the TaylorK-Kalman �lters: theTaylor signal model provides a state-transition matrix to model with better auraya power osillation; a new tehnique for phasor estimation improves the phasorestimates of the traditional Kalman �lter; the main advantage of the phasor estimatesobtained with the TK-K �lter (for K ≥ 2) is that they are instantaneous (no delay atall), preserving their synhrony with the signal, and with lower errors for osillatorysignals; �nally, they redue the omputational ost as ompared with the one yleFourier �lter.The following onlusions from the TaylorK-Kalman-Fourier �lters: Byextending the signal model to the full set of harmoni frequenies, harmoni andnoise rejetion is improved; for K = 0, this �lter bank obtains the DFT, but with68



69muh less omputational burden than the FFT; for K ≥ 0, estimates of the omplexenvelope and its �rst derivatives an be estimated at every harmoni frequeny,performing the Taylor-Fourier transform, when the spetrum of the input signal fallsunder the ideal di�erentiator gains; in the frequeny domain, ideal di�erentiatorgains are ahieved around the harmoni frequenies, so when the spetral load of theinput signal is on�ned in those bands, very good derivative estimates are ahieved;�nally, the new derivative estimates obtained with these �lters are instantaneous (for
K ≥ 2) and therefore, good estimators of osillating signals and their derivatives.5.1 ContributionsThe main ontribution of the thesis is the dynami signal model of the Taylorapproximation to an osillating signal. Before this ontribution only stati signalmodels existed. Better (instantaneous, more preise and fast) phasor estimates wereahieved with the TK-K �lter. The TK-K-F �lter obtain instantaneous estimationsfor K ≥ 2 with shorter transient times and improved the sensitivity to noise of theTK-K �lter. In addition to the phasor, they an estimate the �rst derivatives ateah harmoni frequeny. Spetral analysis an be done with those �lters, obtaininginstantaneous Fourier oe�ients, and with muh less omputational burden asompared with the FFT algorithm.5.2 Future Work� To develop a new model for obtaining faster results when the signal has abrupthanges.� Using the ombination of gains obtained with Akermann algorithm and thenew kind of observers (using the TaylorK-Kalman-Fourier Filters as observers)to obtain quiker estimates before abrupt hanges.� It was shown that it is possible to obtain the FFT with the Taylor-Kalman-Fourier �lter, but it will be interesting to determine the advantages anddisadvantages of these di�erent methods.
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