

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN © DIRECCIÓN GENERAL DE BIBLIOTECAS

DETERMINACION DE TRAZAS DE ELEMENTOS EN MINERAL De tungsteno por el metodo de analisis por activación de neutrones

PRESENTADO POR

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN © DIRECCIÓN GENERAL DE BIBLIOTECAS DETERMINACION DE TRAZAS DE ELEMENTOS EN MINERAL DE TUNGSTENO POR EL METODO DE ANALISIS POR ACTIVACION DE NEUTRONES

DIRECCIÓN GENERAL DE BIBLIOTECAS

DETERMINACION DE TRAZAS DE ELEMENTOS EN MINERAL De tungsteno por el metodo de analisis por activación de neutrones

PRESENTADO POR

FERNANDO MIRELES GARCIA

MAESTRIA EN CIENCIAS CON ESPECIALIDAD EN INGENIERIA NUCLEAR

UNIVERSIDAD AUTONOMA DE NUEVO LEON

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN © DIRECCIÓN GENERAL DE BIBLIOTECAS

AGRADECIMIENTOS

Deseo expresar mi gratitud a los profesores de la División de Estudios Superiores de la Facultad de Cien cias Físico-Matemáticas de la U. A. N. L., que son: Dr.-Federico A. Rodríguez; M. en C. Carlos R. Flores Jáuregui y al Lic. en Física Edgar Treviño de los Santos; por su valiosa ayuda brindada en la realización de mis estudios de maestría y también para realizar el trabajo de tesis. Así mismo, mis más sinceras gracias a mís profesores del Departamento de Ingeniería Mecánica del Programa de Ing<u>e</u> niería Nuclear de la Universidad de Texas en Austin, Texas, E. U. A., que son: Dr. Thomas Bauer, Dr. Andrei -Pradzynski y Dr. Nolan E. Hertel; por su gran apoyo bri<u>n</u> dado para realizar los trabajos de laboratorio que se r<u>e</u>

quieren para esta tesis. IVERSIDAD AUTÓNOMA DE NUEVO LEÓI No podría faltar expresar mi agradecimiento a

mi esposa Silvia y a mi hijo Alberto, que con su estimulo y ayuda hicieron posible mis estudios de maestría; también para mis padres, hermanos y compañeros mil gracias, ya que ellos me han apoyado siempre en mi vida de estudiante.

Verano-1983

F.M.G.

RESUMEN

Utilizando el Método de Análisis por Activación de Neutrones, se analizaron tres muestras (matrices) de mineral de tungsteno (Scheelita), con el fin de determi-nar trazas de elementos, tales como: W, Cu, Zn, Mo y Ag.-Para determinar la concentración de las trazas de elementos en las muestras, se utilizó el procedimiento directo, el cual, requiere condiciones constantes de irradíación y medición, tanto de las muestras como de los estándares em pleados en el análisis.

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN DIRECCIÓN GENERAL DE BIBLIOTECAS

v

INDICE GENERAL

Capítulo	Página
I. INSTRODUCCION	1 .
II. TEORIA DEL ANALISIS POR ACTIV TRONES	ACION DE NEU
A. Reacciones Nucleares B. Decaimiento Radiactivo Alerra C. Producción de Radioisótopo Identificación de los Isó	••••••••••••••••••••••••••••••••••••••
111. EQUIPO EXPERIMENTAL	16
A. Reactor Nuclear 8. Sistema de Espectroscopía Gamma	
IV. PROCEDIMIENTO EXPERIMENTAL	26
UNIVERSA. Preparación de los Estánd B. Preparación de las Muestr C. Irradiación y Medición de DIRECCIdares y Muestras	ares UEVO L26ÓN as 27 R Ios Están BLIO . ECAS 28
V. ANALISIS EXPERIMENTAL Y RESUL	TADOS 33
VI. CONCLUSIONES	••••• 39 '
APENDICES:	
A. Cálculo del Fluio Térmico	v Epitér-

Cápitulo		Página
Β.	mico del Reactor	. 41
	forma Ascendente	. 48
REFERENCIAS.		. 57
ALERE FLAMMAM VERITATIS	· · ·	
		T

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN DIRECCIÓN GENERAL DE BIBLIOTECAS

LISTA DE TABLAS

Tabla		Página
١.	Flujo de Neutrones en el Reactor TRIGA Mark I	. 17
11.	Datos Utilizados en la Curva de Calibr <u>a</u> ción	- 24
ALERE SZ	Irradiación Larga de los Estándares en el Soporte Giratorio para Muestras, Es- tán ordenados con su Vida-Media en For- ma Ascendente	- 29
	Irradiación Corta de los Estándares en el Sistema Neumático de Traslado, Están Ordenados con su Vida-Media en Forma - Ascendente	. 30
v. UNIVER	Irradiación Larga de las Muestras en el Soporte Giratorio para Muestras SIDAD AUTONOMA DE NUE	· 31 /O LEÓN
VI. DIR	Irradiación Corta de las Muestras en el Sistema Neumático de Traslado. BBLIOTE	CAS ³²
VII.	Radioisótopos y su Energía que se Em- plearon en los Cálculos, Están Orden <u>a</u> dos con su Vida-Media en Forma Asce <u>n</u> dente	. 34
VIII.	Se Hallaron las Siguientes Concentracio nes Utilizando el Método de Análisis - por Activación de Neutrones	. 35

viii

1X.	Se Hallaron las Siguientes Concentracio- nes Utilizando el Método de Análisis por Absorción Atómica
X.	Límite Mínimo de Detección Utilizando – el Método de Análisis por Activación de Neutrones, para Aquellos Elementos que – no se Encontraron en las Muestras
X	Energía de Corte Efectiva del Cadmio pa- ra Absorsores 1/v (en eV) de un Rayo de Neutrones Colimado 43
	UANI

Tabla

Página

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN DIRECCIÓN GENERAL DE BIBLIOTECAS

ŧ

LISTA DE FIGURAS

Figura

.

Página .

Ι.	Representación de la Desintegración - Radiactiva Exponencial, en función del número de periodos
ALERE FI	Crecimiento-Decaimiento de la Radia <u>c</u> tividad
AERSI	El Reactor Nuclear TRIGA Mark I
	Sistema Multicanal Simple de Espectro <u>s</u> copia
	$-60. \dots 23$
DIRI	Curva de Calibración \dots \dots \dots \dots \dots \dots 25 \mathbb{R}
D1 7 ,1	Algunas Formas Típicas de Secciones

SCAPITULO I

INTRODUCCION

El método de Analisis por Activación de Neutrones es una herramienta poderosa, que ofrece muchas ventajas enel análisis cualitativo y cuantitativo de una gran cantidad de materiales, que pueden estar en estado sólido o líquido. Las ventajas más importantes son: qué es un trabajo económi co y rápido; se puede determinar concentraciones de elementos en un material dado (matriz) de partes por millón (ppm) o aún menores que ésta. Lo cual dependerá de la sensibili-dad que tenga cierto elemento para ser determinado por di--

ALITÓNOMA DE NUEVO I EĆ

La constante que juega un papel de gran importancia en el Método de Análisis por Activación de Neutrones es la sección eficaz de captura; ya que la reacción nuclear -que nos interesa para la producción de isótopos radiactivos es la reacción neutrón-gamma (n,7), 1-3

cho método.^{1,2}

En la irradiación de las muestras y los estánda-res, se utilizó un flujo de neutrones térmicos en el soporte giratorio para muestras de aproximadamente 1.8 x 10^{12} neutrones cm⁻² seg⁻¹; que proviene de un Reactor Nuclear -- TRIGA Mark I; que se localiza en la Universidad de Texas en Austin, Texas, E. U. A..⁷ En la espectroscopía de rayos-gamma, se utilizó un detector de Ge(Li) de alta resolución; además de un analizador Multicanal, un teletipo para salida de datos y una termínal para entrada y salida de datos.^{8,9}, 10,22

El trabajo desarrollado en esta tesis consistió en determinar la concentración de trazas de elementos, tales como: W, Zn, Ag, Cu y Mo, contenidas en mineral Scheelita (CaWO₄) de una mina de tungsteno; localizada en el -Estado de Sonora, México, para lo cual, se prepararon seis muestras de ese mineral. Tres de ellas fueron utilizadas en la irradiación larga y las otras tres para una irradiación corta. Así mismo, se llevó a efecto la preparación de los siguientes estandares: W, Zn, Ag, Cu y Mo; los tres -

primeros se ultilizaron en la irradiación larga y los restantes para una irradiación corta. 7.12-14

DIR Los resultados obtenidos utilizando el Método de Análisis por Activación de Neutrones se muestran en la Tabla VIII; que si los comparamos con los reportados en la -Tabla IX (esta se tiene como referencia), se observa que son resultados buenos; estos últimos obtenidos utilizando el Método de Análisis por Absorción Atómica.^{2,7,15-23}

CAPITULO II

TEORIA DEL ANALISIS POR ACTIVACION DE NEUTRONES

Cuando un material es bombardeado o irradiado por partículas nucleares producidas en un reactor nuclear, acelerador de partículas u otras fuentes disponibles; algunos de los átomos presentes en la muestra interactuarán con las partículas bombardeantes. Estos átomos pueden ser convertidos en isótopos diferentes del mismo elemento, o en isótopos de diferentes elementos; dependiendo de las partículas bombardeantes. En muchos casos, los isótopos producidos son radiactivos y son llamados radioisótopos; si la radiactividad puede ser distinguida o separada de todas las demás radiactividades presentes al mismo tiempo (o presentes originalmente); entonces la cantidad de esa radiactividad inducida es una medida del isótopo padre, y por lo tanto del elemento padre presente en el material original.²

A. REACCIONES NUCLEARES

lsótopos estables pueden sufrir un gran número de transformaciones nucleares. La transformación más ampliame<u>n</u> te aplicada para el Análisis por Activación de Neutrones es la reacción nuclear neutrón-gamma (n,7), que se ilustra en el siguiente ejemplo:

186 (n,7.) Here Flamman 74 74 74

Esta reacción es usualmente expresada en una forma más sim ple,

La reacción (n,7) ocurre con gran probabilidad con neutrones térmicos $(E_n \sim 0.025 \text{ eV})$ que con neutrones de varios MeV de energía; aunque resonancias fuertes de abso<u>r</u> ción pueden ocurrir en la región epitérmica de energía.

El neutrón es capturado por un átomo blanco, y -© uno o más rayos-gamma son emitidos inmediatamente; éstos son llamados rayos-gamma prontos. Mientras no ocurran cambios en el número atómico (no cambie el número de protones), el radioelemento conserva su identidad química del material blanco. Esta reacción es de importancia primaria en el Análisis por Activación de Neutrones con neutrones térmicos.

Un número de otras reacciones nucleares usadas ampliamente en este campo incluyen reacciones (n,p), la cual requiere neutrones con energías más altas que las energías térmicas. En esta reacción un neutrón penetra al

4

núcleo blanco con la energía suficiente y como resultado es expulsado un protón. El número atómico es reducido en la – unidad, de este modo se convierte el átomo blanco en un el<u>e</u> mento diferente; por ejemplo,

La reacción (n, c) usualmente también requiere neutrones con energías más altas que la energía térmica. La reacción nuclear (n, c), un neutrón entra al núcleo blanco y provoca que una partícula c sea instantáneamente emitida. El número atómico del átomo blanco es reducido en dos unid<u>a</u> des. Por ejemplo,

otras reacciones las cuales encuentran alguna aplicación son: (n,2n), (p,n), (n,n'), (p,7), (d,p), (d,n), (d,∞) , (∞,n) , (∞,p) y (n,f).

B. DECAIMIENTO RADIACTIVO

Mientras la radiactividad inducida es medida en términos de la razón de decrecimiento o decaimiento de los átomos radiactivos, más que en términos directos del núm<u>e</u> ro de átomos radiactivos presentes, esto es válido mientras se mencionen las leyes del decaimiento radiactivo. El decaimiento radiaccivo es un proceso puramente aleatorio, es decir al azar, y la probabilidad de que se – desintegre un núcleo radiactivo dado es fija e independiente de la presencia o ausencia de otros núclidos radiactivos. Así, la razón por la cual se desintegran estos núclidos radiactivos es simplemente dependiente del número presente a cualquier tiempo y se expresa por la relación.

donde N es el número de átomos radiactivos a cualquier tiem po t.

 $\frac{dN}{dt} = -\lambda N$

 λ es la constante de desintegración radiactiva

La constante de decaimiento λ es una característica del núcleo radiactivo bajo consideración. La integración de la -

Ec. 1 nos da, UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN DIRECCIÓN Exp.(- Lt) DIRECCIÓN GENERAL DE BIBLIOTECAS⁽²⁾

donde N_o es el número de átomos radiactivos presentes en el tiempo t = 0. Si el tiempo es medido, durante el cual el número de átomos radiactivos decrece a la mitad del número presente originalmente; entonces tenemos que,

$$...$$
 N_o = N_o exp(- $\lambda t_{1/2}$) (3)

6

(1)

entonces
$$\ln 2 = \lambda t_{1/2}$$

Por lo tanto
$$t_{1/2} = \frac{0.693}{\lambda}$$
 (5)

Así $t_{1/2}$ es una función de λ y por lo tanto también es una constante nuclear. Esto se conoce como Vida-Media y es una característica del núcleo bajo decaimiento. Núcleos radiact<u>i</u> vos de diferentes pesos atómicos y/o diferentes números atómicos, tienen diferente vida media; pero ocasionalmente dos vidas medias pueden ser iguales o muy similares para cualquier distinción que sea hecha. Así por ejemplo, tenemos el caso del manganeso-56 y el níquel-65 que tienen vidas medias de 2.58 hrs. y 2.56 hrs. respectivamente.

En general la fracción del número inicial del núclido radiactivo (o actividad) después de un período de n vidas medias es (1/2)ⁿ. Después de un período de siete vidas medias, ver Fig. 1, la cantidad de material radiactivo habrá decrecido a menos del 1% de su valor inicial.

Los procesos por medio de los cuales decaen los radionúclidos de un estado de alta energía a otro de baja energía son bastante variados. Los procesos de mayor interés en el Análisis por Activación de Neutrones son: emisión beta (β^-), emisión de positrón (β^+), emisión de fotones de rayos-gamma (7), y captura electrónica orbital. Para activ<u>í</u> dades inducidas por neutrones térmicos, solamente emisión beta ocurre con la gran mayoría de los núclidos. Las pártí-

7

(4)

Fig. 1. Representación de la desintegración radiactiva exponencial, en función del número de períodos.

culas beta emitidas por un núclido en particular, no son -monoenergéticas; ellas exhiben una distribución contínua de energías desde una energía cero hasta una máxima, es una c<u>a</u> racterística del radionúclido. La energía máxima de la mayoría de los emisores beta (β) es menor que 2.5 MeV.

La emisión del fotón de un radionúclido puede provenir de dos fuentes diferentes. La emisión de un fotón se -Origina directamente del núcleo de un átomo y se llama rayogamma (7); este tipo de emisión es normalmente precedida por un evento de decaímiento beta del mismo núcleo. Es también posible para el núcleo que captura electrones orbitales; este evento por sí mismo no exhibe emisión de un fotón, sin em bargo, los electrones orbitales de nivel alto caen dentro de las posiciones vacantes de la capa K o L, surgiendo fotones de rayos-X. Las energías de estos fotones son características del elemento al cual pertenecen los radioisótopos que los producen. En general un análisis de la energía del fotón emitido de una fuente desconocida, puede con frecuencia conducir a la identificación del radionúclido. La captura electrônica orbital de la capa K o L no ocurre en radionúclidos producidos por la irradiación con neutrones térmicos.

C. PRODUCCION DE RADIOISOTOPOS

Cuando un radioisótopo es producido a una razón constante tal como sucede en un reactor nuclear o acelerador

9

de partículas; la razón de acumulación del isótopo es dada por la diferencia entre la razón de producción y la razón de decalmiento del isótopo. Por lo tanto tenemos,

$$\frac{\mathrm{d}N}{\mathrm{d}t} = P - \lambda N \tag{6}$$

donde P es la razón de producción del núclido radiactivo -(P = Ø $\sum_{act.}$ V; donde Ø es el flujo de neutrones promedio que llegan al blanco, $\sum_{act.}$ es la sección eficaz macro<u>s</u> cópica promedio de activación que comprende el espectro de energías del neutrón, y V es el volúmen del blanco). La solución de la Ec. 6 viene dada por,

$$N = \frac{P}{\lambda} \left[1 - \exp(-\lambda t_{1}) \right] + N_{0} \exp(-\lambda t_{1}) \quad (7)$$

donde t_i es el tiempo de irradiación. UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN En la mayoría de los casos, N_o. el nûmero de átomos radiactivos presentes inicialmente es cero; por lo tanto tenemos que,

$$N = \frac{P}{\lambda} \left[1 - \exp(-\lambda t_{i}) \right]$$
(8)

y la razón de desintegración de estos átomos radiactivos al instante de transladarlos es dada por,

$$A = \lambda N = P \left[1 - \exp(-\lambda t_{i}) \right]$$
 (9)

Sí t_d es el tiempo después de efectuar el translado; es de-cir, el tiempo después del tiempo de irradiación t_i ; entonv ces tenemos que,

$$A = P \left[1 - \exp(-\lambda t_{i}) \right] \exp(-\lambda t_{d}) \qquad (10)$$

nos dá la actividad después del translado de la muestra desde el flujo de activación.

La fig. 2 muestra una curva típica de crecimientodecaimiento, en la cual podemos ver que el máximo o actividad de "saturación" S, es solamente aproximada a un límite teórico. En forma práctica podemos ver que de la Ec. I y la Ec. 9, tenemos lo siguiente,

$$A_{t} = P \left[1 - \exp(-0.69? t_{1}/T_{1/2}) \right]$$
(11)

Así cuando t, T^{1/2} AUTÓNOMA DE NUEVO LEÓN UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN DIRECCIÓN GENERAL DE BIBLIOTECAS

si $t_1 = 2T_{1/2}$, entonces $A_t = 3/4$ P, y asī sucesivamente. -Esto es más bien interminable cuando irradiamos el material por mucho más de dos o tres vidas medias. Para obtener una actividad mayor requerimos de una razón de producción más alta; esto es, un flujo de neutrones más alto. Es también válido notar que para tiempos de irradiación más cortos que una yida media, la relación entre actividad inducida y tiem po de irradiación es aproximadamente lineal. 1-4

Fig. 2. Crecimiento-decaimiento de la radiactividad.

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN DIRECCIÓN GENERAL DE BIBLIOTECAS

D. IDENTIFICACION DE LOS ISOTOPOS RADIÁCTIVOS

Cuando los materiales son irradiados, la razón de producción se mantiene normalmente constante, prescindie<u>n</u> do de la naturaleza de las partículas bombardeantes, y mant<u>e</u> niendo constante el flujo de irradiación. El número de átomos siendo irradiados pueden ser considerados como constantes; mientras que una fracción está siendo removida por activación y es una fracción pequeña del total presente. La r<u>a</u> zón de formación expresada por la Ec. II, también puede expresarse como,

$$P = N \, \overline{\mathbf{U}} \, \emptyset \tag{12}$$

donde N es el número presente de átomos blanco; \mathbf{U} es la se<u>c</u> ción eficaz de activación para la reacción (cm²) y es una medida de la probabilidad de que un átomo blanco interactúe con las partículas bombardeantes; y \emptyset es el flujo de las partículas bombardeantes, (partículas / cm² / seg.). La razón de desintegración, es decir, la actividad de los radioisótopos producidos es dada por,

A = א 🕫 [י - exp(- کړ;)] (13) UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

donde t_i es el tiempo de irradiación. Puesto que pocos elementos son monoisotópicos, solamente una fracción f de los átomos blanco tomarán parte en la reacción; donde f es la abundancia fraccional del isótopo de interés. El número de átomos puede ser expresado en términos del peso V del elemento presente, su peso atómico M y el número de Avogadro -N_a; así la Ec. 13 se transforma en,

$$A = \frac{f N_a W}{M} \int \sigma \theta \left[1 - \exp(-\lambda t_i) \right]$$
(14)

donde N = $\frac{f N}{M}$

Sin embargo, la actividad no será determinada hasta un tiempo t_d después de que el bombardeo ha terminado, así los át<u>o</u> mos radiactivos producidos habrán decaído en un factor de $-\exp(-\lambda t_d)$. Por lo tanto tenemos que,

En principio todos los factores del lado derecho son conocidos o pueden ser medidos. Por lo tanto, sería pos<u>í</u> ble calcular el peso del elemento presente. En la práctica,sin embargo, \mathbf{T} no es conocida con suficiente exactitud; el Ø no puede ser determinado exactamente; no siempre es fácil d<u>e</u> terminar la razón de desintegración absoluta A. Consecuentemente un procedimiento que envuelva la comparación de una muestra conocida es invariablemente usado. La cantidad de a<u>c</u>. tividad de una muestra desconocida es comparada con la canti dad de actividad de un estándar del elemento que está sien~ do determinado. Es entonces una cuestión simple calcular el pero del elemento en la muestra de la relación,

$$M_{\rm X} = M_{\rm S} \frac{C_{\rm X}}{C_{\rm S}}$$
(17)

donde W_X es el peso del elemento en la muestra, W_S es el p<u>e</u> so del elemento en el estándar, C_X es la razón de cuentas observadas en la muestra, y C_S es la razón de cuentas obse<u>r</u> vadas en el estándar; medidas bajo las mismas condiciones,es decir, manteniéndolas constantes.¹⁻³

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN R DIRECCIÓN GENERAL DE BIBLIOTECAS

CAPITULO III

EQUIPO EXPERIMENTAL

A. REACTOR NUCLEAR

El Reactor Nuclear TRIGA Mark 1, manufacturado por la Gulf General Atomic (anteriormente una División de General Dynamics Corporation), localizado en la Universidad de Texas en Austin, Texas, E. U. A.; es un reactor con seguridad inherente, que se utiliza para entrenamiento, investigación y producción de isótopos. El reactor no<u>r</u> malmente opera a una potencia en estado estable de 250 KW; pero es capaz de ser pulsado a una potencia de 250 MW por una fracción de segundo. El reactor TRIGA con su relativo flujo de neutrones térmicos alto, es una herramienta poderosa y versátil para el Análisis por Activación de Neutrones, por consiguiente para determinación de trazas de elementos. La Tabla I, contiene los valores promedio de los flujos neutrónicos térmico y rápido en varias posiciones;ambos para estado-estable y operación de pulso.

Como la irradiación de muestras, por consiguiente la producción de isótopos es uno de los propósitos pri<u>n</u>

cipales del Laboratorio del Reactor Nuclear; por lo tanto, dispone de cuatro medios de irradiación para el experimentador. La localización de éstos se muestra en la Fig. 3 y, son descritos a continuación.

El acceso completo al corazón del reactor está provisto siempre de un blindaje de agua y, las muestras grandes pueden ser irradiadas en algún lugar adyacente al reactor.

Un motor mueye por medio de una cremallera al -Soporte Giratorio para Muestras (Rotary Specimen Rack), y consiste de un anillo de aluminio que contiene cuarenta depósitos de aluminio espaciados. Estos depósitos sirven para colocar en ellos a los contenedores de las muestras de radioisótopos; los cuales son cilindros de polietileno (Plexiglass) de cuatro pulgadas de longitud y una pulgada de diámetro, con un volúmen de alrededor de 25 ml.

Transfer System o Rabbit System), consiste de dos tubos que guian a la câmara de irradiación, localizada en el corazón del reactor. Las muestras son trasladadas rápidamente hacia adentro y hacia afuera de la cámara por medio de aire comprimido. Este sistema es particularmente convenien te para la producción de isótopos de vida media corta.

El Tubo Experimental Central (Central Experimental Tube) es un tubo de irradiación en el centro del corazón del reactor; que permíte la irradiación de muestras en

Fig. 3. El Reactor Nuclear TRIGA Mark I.

la región de densidad neutrónica máxima./

B. SISTEMA DE ESPECTROSCOPIA DE RAYOS-GAMMA.

El sistema de espectroscopía de rayos-gamma del -Laboratorio del Reactor Nuclear, usado para obtener el espectro de rayos-gamma consiste de un cristal de Ge(Li) con un volúmen de 96.1 cc, acopiado al Analizador Multicanal -7010 Stand-Alone DAAS (Data Acquisition and Analysis System) que puede ser conectado a una computadora DEC PDP-11 o LSI, para el control remoto total. La memoria completa del analizador es de 4096 canales. El diagrama de la Fig.-4, muestra el arregio utilizado en la espectroscopía de r<u>a</u> yos-gamma.

Cuando un fotôn del rayo-gamma, procedente de una muestra activada interactúa con el cristal de Ge(Li),entonces un puiso de pares electron-hueco es producido, que es proporcional a la magnitud de la cantidad de energía perdida en el cristal por el fotón del rayo-gamma. --Puesto que, el puiso eláctrico de salida es pequeño, prod<u>u</u> cido por el contador, así pues, hay la necesidad de amplificarlo hasta un tamaño que sea compatible con el rango del Analizador Multicanal (0-10 volts). El analizador ide<u>n</u> tifica el tamaño del puiso amplificado y almacena la info<u>r</u> mación en el canal apropiado de la memoria (4096 canales)en el disco magnético del analizador. El programa para el

20

Fíq. 4. Sistema multicanal simple de espectroscopía.

•

análisis de la información utilizó la subrutina: Análisis -GAMMA 2. Esta es una subrutina de investigación del pico general donde las energías centrales de los picos encontrados son comparadas con los datos del registro que se está utilizando. El espectro de altura de pulsos, puede ser rel<u>a</u> cionado con el espectro de rayos-gamma de la muestra radia<u>c</u> tiva correspondiente. Un espectro de altura de pulsos del -Co-60 se muestra en la Fig. 5.^{8,9,20,22}

La curva de calibración se muestra en la Fig. 6;correspondiendo 0.5 KeV/canal, y fué la que se utilizó en el transcurso del trabajo. Esta curva de calibración fué o<u>b</u> tenida utilizando tres estándares de espectroscopía gamma -(Modelo-CT-100, suministrados por Baird Atomic); ver Tabla II.

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN © DIRECCIÓN GENERAL DE BIBLIOTECAS

22

Fig. 5. Espectro de rayos-gamma del Co⁶⁰.

Tabla II. Datos Utilizados en la Curva de Calibración.

Fig. 6. Curva de calibración.

CAPITULO IV

PROCEDIMIENTO EXPERIMENTAL

A. PREPARACION DE LOS ESTANDARES

Se prepararon en forma de solución líquida los si guientes estándares: W, Cu, Zn, Mo y Ag. Teniendo para la 'irradiación larga en el Soporte Giratorio para Muestras (Ro tary Specimen Rack), los siguientes estándares: W, Zn, Mo y Ag; ver Tabla III. También se tienen para la irradiación corta en el Sistema Neumático de Transferencia (Pneumatic -Transfer System), los siguientes estándares: Cu y Mo; ver -Tabla IV.

Un cálculo aproximádo del peso necesario de los estándares; tanto en la irradiación larga como en la irradiación corta, se utilizó la Ec. 16; suponiéndose una actividad de dos microcuries, tiempo de irradiación de dos horas para isótopos de vida media larga y de un minuto para isótopos de vida media corta y, una potencia de operación del reactor nuclear del 100%, es decir, 250 KW. Lo anterior se hizo con el fin de evitar que una vez irradiados los estándares, la actividad que se induzca en ellos, no sea muy elevada o muy pequeña; ya que de llegar a suceder lo ante-rior, se presentarían problemas a la hora de efectuar las mediciones. El peso de los estándares se obtuvo con una pr<u>e</u> cisión de décimas de miligramo.¹,7,12-14

B. PREPARACION DE LAS MUESTRAS

Seis muestras de mineral Scheelita (CaWO₄) de una mina de tungsteno, localizada en el Estado de Sonora, México, fueron analizadas utilizando el Método de Análisis por Activación de Neutrones, en esta tesis. Tres de ellas util<u>i</u> zándose en la irradiación larga y las otras tres en irradia ción corta; con un peso de 200 mg y 100 mg respectivamente.

Para evitar la contaminación de las muestras durante su manejo, fueron doblemente encapsuladas en frascos de polietileno; con dimensiones exteriores de 16 mm de diámetro y 66.7 mm de longitud y 11 mm de diámetro y 24 mm de longitud, respectivamente. Deberá Sellarse el frasco más p<u>e</u> queño cuando se trate de una muestra en forma sólida o deb<u>e</u> rán sellarse ambos cuando la muestra sea en forma líquida;para proporcionar una mayor seguridad y, de esta forma se evita que se presenten fugas del líquido.

Los frascos de polietileno fueron lavados para elíminar la posible presencia de contaminación, haciéndose en el siguiente orden: con jabón para usos nucleares y agua deionizada, agua deionizada con aproximadamente 20 ml de ácido nítrico rebajado al 10%, agua deionizada con aproxim<u>a</u> . damente 20 ml de ácido cítrico rebajado al 4%; a continuación se dejaron secar, para después limpiarlos con acetona. Tanto en el lavado con jabón como en cada aplicación de ácido, se enjuagaron tres veces con agua deionizada. Las muestras fueron pesadas con una precisión de décimas de mi<u>-</u> ligramo.^{7,12,13}

T. IRRADIACION Y MEDICION DE LOS ESTANDARES Y NUESTRAS

Las Tablas III y IV, nos muestran los datos para los estándares de vída media larga y vida media corta respectivamente. Las Tablas V y VI, nos muestran los datos de las muestras para irradiación larga y corta, respectivamente.

Una condición de importancia fundamental es el porcentaje de pérdida del tiempo muerto durante las medicio nes. En este caso se hicieron las mediciones manteniendo siempre un porcentaje de pérdida no mayor del 10%, se cons<u>i</u> dera aceptable.

En el presente trabajo se emplearon las mismas condiciones en la irradiación y la medición, tanto para los estándares como para las muestras; esto conviene hacerse para facilitar el cálculo de las concentraciones de las trazas de los elementos que se buscan en las muestras.^{2,7,-} 15-17

t

Tabla IV. Irradiación Corta de los Estándares en el Sistema Neumático de Traslado, Están Ordenados con su Vi-

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN DIRECCIÓN GENERAL DE BIBLIOTECAS

Tabla V. Irradiación Larga de las Muestras en el Soporte G<u>i</u> ratorio para Muestras.

DIRECCIÓN GENERAL DE BIBLIOTECAS

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN DIRECCIÓN GENERAL DE BIBLIOTECAS

CAPITULO V

ANALISIS EXPERIMENTAL Y RESULTADOS

El procedimiento utilizado para efectuar los cálculos fué el más simple, y consiste en la aplicación de la . Ec. 17. De esta forma, la única corrección necesaria que se hizo a las mediciones fué la del tiempo de decaimiento; es decir, tiempo después de efectuada la irradiación hasta el momento de efectuar las mediciones. La propagación del error de las mediciones hasta llegar a los resultados, se calculó empleando las fórmulas que se encuentran en el capí tulo 4, sección IV, páginas 131-139, de la referencia 8. Teniendo en consideración el radioisótopo producido y alguna energía del rayo-gamma emitida de mayor impor tancia de cada uno de ellos, como se muestran en la Tabla -VII, se hicieron los cálculos obteniendo los resultados que se muestran en la Tabla VIII; tomando en cuenta tanto a radicisótopos de vida media larga como a radicisótopos de vida media corta, que son: W, Zn, Ag y Cu, Mo, respectivamen te. 2,7,15-23

En las Tablas VIII y IX, se muestran dos análi-, sis que se obtuvieron por dos métodos diferentes de las -

Tabla VII. Radioisótopos y su Energía que se Emplearon en

to de Análl-		9 4	0.P22%	0.322%	0.099%		
ando el Métoc		οw	52.0ppm	:	ł		
SID ones Ut N I za	ALERE FLAN VERITAT		0.600%	0.008%	0.0648		
es Concentraci		A9 A200	19.0ppm	15.0ppm	5.0ppm		ANL
las sigulent	rción Atón BULICO Atón Atón Atón Atón Atón Atón Atón Atón	IDAD CCIÓN	0 035% 0 0	0,900%.0	0.500% 0.500%	/IA DE	DE NUEVO LEÓN ® BIBLIOTECAS
Se Hallaron	sis por Abso	3	1.600%	9 1	ł	100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100	
Tabla IX.		No. de Muestra	FX70010	FX71054	FX71058		

tres muestras de mineral Scheelita (CaWO₄); que se llev<u>a</u> ron a cabo utilizando el Método de Análisis por Activación de Neutrones y el Método de Análisis por Absorción Atómica, respectivamente. El último método considerado como una referencia.

Desde el punto de vista comparativo, los resul tados obtenidos en ambos métodos de análisis son buenos. Esto implica que cada método de análisis tiene un campo de aplicación limitado; mismo que dependerá de la sensibilidad que tenga cada elemento para ser determinado, ya sea por un método u otro; así como también, de la calidad del equipo que se emplea en cada caso. Por último, se deben de aplicar las condiciones óptimas en cada méto do de análisis, de esta manera, los resultados que se ob tengan serán con un margen de error lo más pequeño posible.

DIREEN La Tabla X, se muestra el limite mínimo de detección utilizando el Método de Análisis por Activación de Neutrones, para aquellos elementos que no se encontraron en las muestras.

CAPITULO VI

CONCLUSIONES Y RECOMENDACIONES

A. El Método de Análisis por Activación de Neutrones es una herramienta sensible para determinar muchos elementos, quese encuentran como trazas en una gran variedad de materia-les; por lo tanto, es conveniente utilizar la metodología del análisis de tal forma, que el Método de Análisis por A<u>c</u> tivación de Neutrones sea una herramienta analitica poderosa.

B. En el análisis cualitativo efectuado a las muestras utilizando el Método de Análisis por Activación de Neutrones se encontraron los siguientes elementos: W, Zn, Cu, As, Sb, Hn, Al, Fe y V. Dada la abundancia de los primeros tres sedecidio obtener un análisis cuantitativo. Se hizó una comp<u>a</u> ración cuantitativa y cualitativa por el Método de Análisis por Absorción Atómica.

C. De las Tablas VIII y IX se observa que los resultados de ambas técnicas coinciden bastante bien, excepto por el Cu.-En el caso del tungsteno (W) se observa claramente que la técnica del Análisis por Activación de Neutrones es bastantemás sensible que la de Absorción Atómica. Por lo tanto,la técnica efectuada en esta tesis es muy conveniente cuando el mineral de tungsteno sea más valioso.

En el caso del Zinc (Zn) se nota que es más sens<u>i</u> ble la técnica de Absorción Atómica. Por último, para el c<u>o</u> bre (Cu) tenemos una situación similar a la anterior del --Zn.

Dado que en la muestra FX70010 no coinciden los resultados del cobre, se hicieron varias determinaciones -por el Método de Análisis.por Activación de Neutrones obteniendo el mismo resultado, de esto, se recomienda verificar el análisis del cobre por Absorción Atómica.

D. Los estándares y las muestras con su irradiación en el reactor nuclear se convierten en materiales radiactivos, -por lo tanto, en el proceso de irradiación es necesario con trolar su peso, tiempo de irradiación y potencia del reac-tor nuclear; de tal forma que la radiactividad que se induz ca en los estándares y muestras, no sea problema para su ma nejo en el proceso de medición. En la seguridad radiológica, tambiénse requiere tener radiactividades pequeñas (~2 mi-crocuríes) para evitar al máximo los riesgos.

E. En México se cuenta con un Reactor Nuclear TRIGA Mark, -III, localizado en Salazar, Edo. de México, con caracteristicas similares al empleado en esta tesis; que se le puededar una utilización en: industria, investigación y enseñanza. Decimos lo anterior porque muchos problemas cientificos y de control de calidad se pueden auxiliar del Método de --Amálisis por Activación de Neutrones para su resolución.

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN © DIRECCIÓN GENERAL DE BIBLIOTECAS

APENDICE A

CALCULO DEL FLUJO TERMICO Y EPITERMICO DEL REACTOR

Como se muestra en la Fig. 7, el cadmio tiene una gran sección eficaz de absorción para neutrones con una energía abajo de 0.5 eV, debido a la reacción nuclear 113 Cd (n,7)¹¹⁴ Cd. Si una muestra es irradiada bajo una cu bierta de cadmio 0.7-1.0 mm, los neutrones térmicos son filtrados y la activación (n.7) solamente se lleva a cabo con los neutrones "epicadmigs" (epitérmicos). De la Tabla XI, también se muestra que la "energía de corte efectiva"depende del espesor del cadmio y de la geometría. La razón de cadmio (CR) es definida por:

DIREC_{CR} = <u>Actividad sin la cubierta de cadmio</u> S Actividad con la cubierta de cadmio

$$= \frac{\emptyset_{\text{th}} \overline{o} + \emptyset_{\text{epi}}}{\emptyset_{\text{epi}}}$$
(18)

y por último tenemos CR - 1 =
$$\frac{g_{tho}}{g_{epl}}$$
 (19)

Donde \emptyset_{tn} y \emptyset_{epi} representan el flujo neutrónico convenci<u>o</u> nal hasta E_{Cd} y el flujo epicadmio arriba de E_{Cd}, respect<u>i</u> vamente.

Tabla XI. Energía de Corte Efectiva del Cadmio para Absorsores 1/v (en eV) de un Rayo de Neutrones Colima

Si el cadmio no es utilizado, la razón de los fl<u>u</u> jos térmico a epitérmico o aún los valores absolutos de estos flujos pueden ser-obtenidos de una irradiación de dos ~ detectores:

 $R_1 = \emptyset_{th} \overline{U}_{01} + \emptyset_{epi} |_{I}$ para el detector No. 1.

$$R_2 = \emptyset_{th} \nabla_{02}^{*} + \emptyset_{epi} I_2$$
 para el detector No. 2.

resolviendo este sistema de ecuaciones simultáneas para --Ø_{th} y Ø_{epi} tenemos,

y la razón de la muestra cubierta con cadmio es dada por,-

Por medio de las Ecs. 20 y 21 se calculó el Ø_{th} y el Ø_{epi}, obteniéndose una buena aproximación. Se irradió

18.1 mg de ₄₀Zr, con una potencia del 92% de la capacidad del reactor (230 KW), tiempo de irradiación de una hora, tiempo de decaimiento de 70.95 horas, tiempo de conteo de 8,000 seg, y se colocó a una distancia de 5 cm del detector. La siguiente lista de datos fué empleada en hacer el cálculo,²¹

La fórmula que se utiliza para el cálculo de R₁ y R₂ es la siguientes,

$$R(E) \frac{interacciones}{núcleo-seg} =$$

$$= \frac{\text{No. de cuentas/seg (E)}}{\mathcal{E}_{ab}(E) \text{ f N } \left[1 - \exp(-\lambda t_{i})\right] \exp(-\lambda t_{d})}$$
(22)

dnde Eab es la eficiencia absoluta del detector en cuestión, en función de la energía.
f es la abundancia isotópica.
N es el número de partículas por cm³.
Les la constante de decaimiento.
t es el tiempo de irradiación.
t d es el tiempo de decaimiento.
Sustituyendo los valores correspondientes en la
Ec. 22, tenemos que los valores de R₁ y R₂ son:

 $R_{1} = 2.61 \times 10^{-13} \frac{\text{interacciones}}{\text{Núcleo-seg}}$ UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN $y \quad \text{DR}_{2} = 4.05 \times 10^{-14} \frac{\text{Interacciones}}{\text{Núcleo-seg}} \text{BIBLIOTECAS}$

Ahora con estos valores y los valores de \mathbf{v}_{01}^{\prime} , \mathbf{v}_{02}^{\prime} , \mathbf{l}_{1}^{\prime} y \mathbf{l}_{2}^{\prime} sustituyéndolos en la Ec. 20 y la Ec. 21, tenemos que,

$$\emptyset_{\text{th}} = 5.02 \times 10^{11} \frac{\text{Neutrones}}{\text{cm}^2 - \text{seg}}$$

y $\theta_{epi} = 5.36 \times 10^{10} \frac{\text{Neutrones}}{\frac{2}{\text{cm} \cdot \text{-seg}}}$

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN © DIRECCIÓN GENERAL DE BIBLIOTECAS

2.0

.

47

2

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN DIRECCIÓN GENERAL DE BIBLIOTECAS

					, .	<u> </u>	<u> </u>		
	Ener gla Këv	1-56- topo	ln- te <u>n</u> si- dad	Vida- Redia	Eae <u>r</u> g t a. Kev	156- topo,	1n- ten \$1- \$90d	Vida- Nedia	
	46.5	200Ph	100	22 ут	91.4	aat Nd	100		
	49.1	HEITD	100	7.2 6	92.4	1mm Re		18.7 min	
	51.4	Markh	100	4.4 min	93.1	1mmTa	0	8.15 hr	
	56.8	sec) t	-	1.4 mia	93.2	f‴Cu	70	61.6 hr	
	57.4	I ^m Cc	25	33.0 hr	93.2	In: Ag	100	43 sec	
	57.5	HI	50	5.5 hr	93.4	HI	18	5.5 hr	
	\$7.5	- o)-	100	10.5 min	93.6	**Yb	6	30.6 d	
	57.7	with .	H	7.2 d	94.6	^{ins} Dy	100	2.36 hr	
	57.8	110-17	100	1.5 min	95.9	7 Se	100	3.91 min	
	58.2	¹³⁰ Dy	100	344.4 d	96.7	**Se	6	121 d	
	58.4	Hand Gq	2	18.0 hr	97.2	mar Rh	5	4.4 mín	
	\$9.8	7#U	90	6.75 d	97.5	HIG9	100	236 · d	
	60.5	"Eu	2	1.7 yr	99.0	190 Pt	100 miles	4.1 d	
	61.2	ST AMA	100	340 d	99.4	10 Tm	20	85 d	
	61.6	SD.	100	3.5 min	100.3	ITa I	40	. 115.1 d	
	63.0	TO	100	30.6 d	102.2	Gđ	17	3.73 min	
	600		30	ZI.S M	103.0	""Se	100	56.8 min	
3	65.7			115.1 0	103.2	W ² Gd	75	236 d	
E	67 7		3		103.2	*Sm	100	47.1 hr	
H	60 4	Marca .			103.4	a a	-	8.15 hr	
	60.6		20	430 Q	104.2	-Sm	100	21.9 100	
	72 1	MUNY	AT 1	340 br	105.5	Eu	6.5	L. YE	
KEN	74.7	100	100	11.54 min	105.9		2	155 G	
	74 9	MITH	70	23.34 man	105.0	Ke	1	15.7 mia	
	76.3	terrish	000	1.5 min	108.3	NP-	1 100.		
	77.6	H-Rb	5	1.5 min	108.2	Int-Ba	100	14.0 81/0	
	77.6*	ter Ha	100	45 hr	109.1	UN DY			
	77.7*	MU PI	100	20.0 57	110.0	1001/1	100	30.6	
	80.2	1211	3	204 3	111.2	14Yo	12	10.00	
TINI	80.2	HICe	10	285 d	ALL A	INC.	132	NILEVOIEÓN	
UN	\$0.6	Mi Ho	100	26.9 hr	1130	1771		IN CATA O LEON	
	80.6	Ho	14	30 VT	113.0	17781	35	185 d	2
	\$0.8	12Ba	52	7.5 V	113.5	173.4	50	101 hr	2
	84.4	INT TTT	100	1 129 F d F	D 113.8	INT'N		INTICAS	
	86.6	twee U	100		114.6*	34934d	98	LICIECAS	
	86.6	south .	-	22.4 min	116.4	MINIA	100	170 min	
	87.0	-Tb	37	73 d	116.7	DISC	100	7 E br	
	\$7.7	"As	5	38.7 hr	118.6	MAN		306 d	
	88.0	Mopd	100	13_5 hr	121.1	145.	32	171 4	
	\$5.0	Mar Ag.	100	40 800	121.5	17241 11	10	155 d	
	A 38	MCq	100	470 d	121.6	177 Vh	15	1.9 hr (
	88.1	MITD.	1.5	7.2 0	121.8	MAREN	20	9.35 hr	
	88.3	Mer Lu	100	3.71 hr	121.8	tasp.	60	12.2 vr	
	\$9,6	Lut HL	4	78.0 4	121.8	nZn		2.2 min	
		ł					10-17		
					-				

		<u> </u>				1		
	Ene <u>r</u> gîa. KeV	lsó- topo.	in- ten si- dad	Vida- Media	Ener gía, KeV	lsá- topo	in- ten si- dad	Vida- Media
	121.9	^{\$1} Co	100	270 d	158.3	Hg		2.0 min
	122.6	A Re		3.8 0	138.3	110 Au	100	3.15 0
	123.1	IN EU	100	IO yr	158.4	117/001-	100	
	124.0	THE F		7.6 0	150.4	12207	100	
	124.2	(BSBA/	100	700 4	150.5	TIPCIO	100	
	125.5	181Tc	2	140 min	160.0	4750	100	3434
	127.2	134PC+	100	315 h	160.2	1550	lino	19.4 min
	127.4	ATN:	16	360 h	160.6	179-115	10	.90 sec
	127.4	17741.11	25	155 d	161.9	17450	100	175 sec
	120.0	19106	100	14.6 d	162.1	77A5	10	7 hr
	130.0	1434Rh	100	45 sec	162.3	223Th		17.4 min
	130.0	3#3 R II	100	4.5 hr	162.6	14405	1	93.6 d
	130.7	INYD	25	30.6 d	164.6	127U	10	6.75 d
	133.1	WtHf	50	44.6 d	164.9	HIGd	7	3.73 min
	133.4	MCe	100	285 đ	165.8	1#Ce	100	140.0 d
	133.7	1 ²¹ Ba	43	11.5 d	165.8	139Ba	70	83 min
	133.9	UP7"Hg		24.0 hr	168.1	¹¹¹ Pm	60	27.5 hr
\mathbf{S}	134.3	1NTW	35	24.0 hr	169.3	***Th	1	22.4 min
	136.0	1ªSc	96	🗋 121 d	170.0	"Mg	0.6	9.45 min
E	136.0	1×IW	55	145 d	171.4	illn.	100	2.81 d
6	136.3	"Co	15	270 d	171.7	HEAT TA	100	16.2 min
	137.0	1#Re	100	3.8 d	172.1	100mbq	90	5,5 hr
VAN I	137.4	11479	2	101 hr	172.4	an Pt	25	3.0 d
	138.3	итур	10	1.9 hr	172.9	¹¹² Sm	0,3	47.1 hr
	138.4	"is"In	5	54 min	174.4	Mine Lu	19	155 a
	(139.0)	IND	16	12.0 mm	175.3	PG2	100	21.1 mia
	139.0	1 US	80	31.5 m	170.2	150	45	2.0 91
	139.8	The state	100	49 500	177.0	15180	25	27.5 hr
	140.4	MO	100	604 hr.	178.0	BID	25	30 d
TINI	140.0	IASC m		210 min	179.5	HITA D	16	TINAOTEÓN
UNI	1425	ALMEA	100	A 20.0 sec	180.9	"Mo	C 61	U & Vhr LEUN
	144 7	174Yh	6	101 br	184.2	*Cu	100	61.6 hr
	145.4	14100	. 100	12.5 d	184.3	IMAM HO	100	30 yr
	146.7	Inter Ta	94	16.2 min	/184.3	IMT m	46	
	149.7	PITC	100	24.8 min	184.9	11.20 Ta	55	16,2 min
	150.3	IT Yb	100	1.9 hr	185.9	mpt	=	30.0 min
	150.8	UIC4	30	48 min	186.2	***Ra	- 1	12c Ra series
	151.1	as#Sr		70.0 min	186.7	190TOS	80	10.0 min
	151.7	wiw	100	145 d	188.9	In Pd	100	4.75 min
	152.4	IR Ta	35	115.1 d	190.2	114 - 10	100	50 d
	153.1	177#Lu	26	155 d	191.4	197 Hg	2	65 hr
051	153.7	166"Dy	(***	1.25 min	191.4	117 Pt	10	20.0 hr
	155.1	**Re	100	[6.7 hr	192.0	Mo	100	14.6 min
	156.0	14 Nd	25	1.8 hr	192.5	#Fe	4	45.1 d
	156.3	"Ta	12	115.1 d	194.5	"Ge		11.3 pr
		t i		2		ł	J	

	<u> </u>		ī		<u> </u>			
	Ener gîa.	ιsά- top0.	ln- ten si-	Vida- Media	Ener gía. Kev	lsó≁ topo	ln- ten si- dad	Vida- Media
	197.2 97.4	1:07 P	17 100 85	73 d 29 sec 30.6 d	250.1 253.9 255.2	¹⁷⁷ Lu ⁹⁷ Zr ^{11.} 'Sr.	2 30 100	6.75 đ 17.0 hr 115 đ
	198.3 198.4 198.6 202.4	154Tm 14=Ta 73Ge 9111Y	100 8 12 100	85 đ 115,1 đ 79 min 3.14 hr	255.6 261.2 263.2 264.1	131Nd 16376 105Ru 182Ta	28 4 5 22	12 min 30.6 d 4.5 hr 115.1 d
	203.8 204.3 208.0 208.2	^{ກາ3} Hg ^{ເກ} ີະໄປ ສະບ ເອລຍ	100 22 100 25	5,6 min 155 d 6,75 d 3,15 d	264.5 264.6 264.6 267.6	⁷⁷ Ge ¹⁸ Se ¹³ Ge ¹³⁷ L	100 100 100 2	11.3 hr 121 d 79 min 6.75 d
R	203.4 211.4 211.4 212.3	IIIILU IIILU IIICC IIIIND IIIIITC	100 100 100 100	135 d 6.75 d 11.3 hr 1,8 hr 154 d	269.3 269.6 271.0 273.3	130 [.] 1919] 142Nd 132* Eu 132* Eu	100 12 57 0.6	28.7 Br 3.0 đ 1.8 hr 9.35 hr 3.0 hr
EKND D	214.3 215.3 215.5 215.5	175-HI ImmHI 177-Ge 17Ge	100 86 100 100	19.0 sec 5.5 hr 54 sec 11.3 hr	275.1 275.4 275.8 275.9 276.4	^{14"} Nd ¹³¹ Pm ⁸¹ Sc ¹³³ ²⁰ Ba	7 30 100 100	J1.L d 27.S hr 18 min 38.9 hr 7 S yr
	213.8 215.8 215.8 216.1 219.9	International In	14 5 100	73 d 30 yr 11.5 d 3.0 d	277.5 278.5 279.1 279.1	200Np 159Te 1003Hg 2003Hg	65 	2.35 d 72 min 46.9 d 52.1 hr
	222.3 224.9 225.8 228.2 228.2	³³⁵ C ¹³⁵ C ¹³⁶ Cd ²³⁹ Np ³⁷⁷	35 50 2 60 57	115.1 d 25 min 18.0 hr 2.35 d	279.6 - 279.5 280.3 280.4 281.8	⁷³ Se ¹⁶³ Dy ¹⁹³ Os ¹⁶⁶⁷⁷ Ho ¹⁷⁷⁷⁷ Lu	40 17 35 33 21	121 d 2.36 hr 31.5 hr 30 yr 155 d
JN	229.4 229.5 231.5 231.5	Instra Instra Instra Instra Instra	A ²⁰ - 7	115.1 d 70.0 d 70 min 33.0 hr	281 8 282.6 283.3 284.3	**As ***Yb ***Gd ***1	60 12 7	38.7 hr 101 hr/O LEÓN 3.73 min 8.08 d
	235.7 238.6 238.8 240.0 240.2	¹¹² Pb ¹¹² Pb ¹¹² Nd ¹²⁸ Nd ¹³⁸ Pm	100 100 15 15	90 nr 775Th series 38,7 hr 1.8 hr 27,5 hr	290.0 293.1 293.6 295.4	²¹⁵ Ce 145Ce 1941r 214Pb	60 100 20	18 min AS 33.0 hr 19.7 hr 220Ra series
	242.0 244.6 245.4 245.4	234Pb ISEU IIIAg IIIECd	- 28 10 100	²²⁸ Ra series 12.2 yr 7.4 d 48 min 2.81 d	295.8 295.8 298.6 299.9 303.8	171Er 192]r 164Tb 184Tb 193Ba	42 35 97 15 70	7.8 hr 74.4 d 73 d 27.0 d 7.5 vr
	245.6 246.5 249.7	***5m ***5m ***Pt ***As	6 - 15	21.9 min 30.0 min 38.7 hr	305.3 306.2 306.8	139Gd 108Rh 109Tc	1 27 100	18.0 hr 35.3 hr 14.0 min

					<u> </u>	T	1	
			n-				in-	
	Enec	Icha	ten	114	Ener		ten	
	ola.	130-	si-	vioa-	ola.	150-	s 1 -	Vida-
	KeV	.τορο	dad	Wedia	KeV	topo	dad	Media
			ł	·······				
	307.5	waAp	24	30.6 d	361,0	157 Tc	15	105 d
	308.1	FIEr	100	7.8 hr	361.2	17 TOS	100	10.0 min
	308.4	192]r	35	74.4 d	361.7	""Dy	30	2.36 hr
	311.5	Pd	10	13.5 "hr	363.5	1#Gd	100	18.0 hr
	311.8	Pa	100	27.0 đ	364.5	1741	100	8.08 d
	3129	ι κ.K.		12.52 hr	366.3	*Ma	2	66 hr
	314.6	- Gd	37	3.73 min	366.5	**N1	20	2.56 hr
	315.2	316-JU		1.9 hr	367.3	"Ge	15	11.3 hr
	315.7	==Np	7	Z.35 d	373.1	^{ra} Ba	16	11.3 d
	316.5	and it.	HOU)	74.4 d	373.6	Hg	1 <u>1111</u> 1)	42.0 min
	316.9	1717	(1993) 1993	30.0 min	375.2	and a		27.0 d
	317.1	Mar Ru	10	4.5 hr	376.5	mpd	75	22.0 min
	318.3		12	16.2 min	378.8	"Lu	44	155 d
	319.1	- Rh	100	35.3 hr	383.8	12-Ba		7.5 yr
	319.2	Lu	16	155 d	387.5	""Os	35	31.5 hr
	319.4	Nd	12	11.06 d	388.Z	124	100	13.1 d
	320.0		100	27.8 d	388.5	-Sr	100	2.84 hr
\approx	320.0			5.79 min	391.4	In	100	104 min
$\mathbf{\Sigma}$	321.2	-OS	35	< 31.5 hr	396.1	WYD	100	101 hr
1	325.1	Ru	9	2.88 d	398.Z	2002		27.0 d
I	326.3	MIND	16	1.8 hr	400.7	/*5¢	20	121 d
	321.0		27	155 d	401.4	PD		32.1 hr
	.328.0	100	100	7 19.7 hr	409.1	1 PT	50	3.0 d
YZ.	328.0	La Interes		40.27 hr	410.8	Ho	14	30 yr
121	332,0	100001	100	9.5 min	411.0	Ev	7	12.Z yr
		HI	100	5.5 hr	411.8	Au	100	Z.70 d
	222 0			6.75 d	414.1	THIN LU	20	155 d
	333.0	22201-	25	0.2 0	415.0	70	5	2/.0 6
	324.1	115min	101	2.33 0	415.4	liter	25	11.3 nr
	340.3	1610-	100	4.3 nr	417.0	111 In	35	54 min
	110.2	230.	100	27.3 NF	417.4	173-1		
UN	341.0	HIAA	Δ		477 5	LU LU	1 32	
	341.6	173.1.1	- 900	70.0	425.3	15.4.	20	
	3.14.2	NEE.	100	12.1	437.9	1545L	1.00	20
	344.7	13245	30	12.2 yr	437 8-	175MI	100	
	3457	TRILLE			A112.8		155	
	146.1	197. Pt	500	880 min	418 7	4970	100	13.9 hr
	347 5	INCA	1	180 hr	440 1	107.5.4	17	11.0 1
	350.7	191 24	6	30 4	440.7	202T1	100	120 4
	352.0	214Dh			4477	1241	100	12.0 G
	395 6	17.	50	170 hr	442.1	100 117		23.9 0004 6.5 hr
	355.7	195 A 11	100	67 2	4420	1425.0	19	12.2 10
	356.0	1322	100	75 57	446.0	1310-	14	375 hr
	356 A	AUS_	100	75 min	447 1	197.00		21.3 III 95 d
	359 7	19170	60	10.4	457 A	13170	24	24.8 min
	360 A	MICH	100	171 min	456.0	111.04	1 6	30 4
			100	2.73 Mill			· *	2.0 0
		• : · · · · · · · · · · · · · · · · · ·	e				B 1	1

_	(-1							
		e -	1				10-	
Ел	ier		ten		Fore		+	
പ്	' <u>a</u> T	150-	51-	Vida-	~~~	lsó-	5.2	Vida-
	N	topo.	4.7.4	⊈ edia	yra. V-u	topo	SL-	Dedia
	. U		080		VER		dad	
	159.2	τ¤Th		22.4 min	\$15.5	IS MOY	_	t.25 min
4	159.5	Te		33.5 d	520.8	⁷⁷ As	30	38.7 hr
4	59.5	1.Te	3	72 min	520.7	*>Br	_	2.33 hr
4	60.4	17-1Os	100	31.5 hr	521.5	===T1	4	12.0 d
4	63.1	1=15b	31	2.0 yr	526.3	02*)	9	25.4 min
4	64 6	Li=Cs	2	6.2 d	527.7	""Cd	100	2.3 d
	67.9	17=]r	65	74.4 d	\$29.5	**Gd	3	3.73 min
4	65.6	™-Ru	17	4.5 hr	529 6	""Ho	14	30 yr
4	75.1	™Rh	100	210 d	529.5	* 185	-	2.33 hr
	6	(*****Rh)		(2.5 yr)	531.0	"Nd	45	11.06 d
4	78.0	In Rc	7	16.7 hr	539.0	12165	100	3.0 d
4	79.3	ENT W	85	24.0 hr	540.4	115Nd	26	1.8 hr
4	79.3	TTY .	100	3.14 hr	542.8	Impl	-	30.0 min
	80.1	™Gd	3	3.73 min	544.9	101TC	8	14.0 min
	82.2	TAISHE	100	44.6 d	\$45.7	15 Dy	5	2.36 hr
	84.9	153mCd	18	44 d	551.4	PAT W	18	24.0 hr
4	86.8	ImLa	48	40.27 hr	552.9	11 ² I.0	_	1.1 hr
4	89.5	"Ca	8	1 4.7 d	554.3 -	N=Br	80	35.87 hr
	1 Tru	47Sc	l N	2 3.43 d	555.8	***Rb	100	1.02 min
4	190.5	143Ce	7	33.0 hr.	\$\$5.8	104Rh	100	44 sec
4	91.1	==ть		22.4 min	555.8	"MARN		4.4 min
4	1.2	1	15	13.1 d	557.7	19305	50	31.5 hr
4	192.5	""Cd	60	77/53 hr	558.1	₩Ge	18	11.3 hr
14	192.7	171Te	7	24.8 min	558.2	114#Jn	4	50 d
	193.5	unb(30.0 min	559.2	76A5	100	26.3 hr
N.	196.3	¹³¹ Ba	28	11.5 d	563.2	104Cs	8	2.07 yr
	97.0	MARU I	100	38.9 d	564.0	122Sb	100	2.75 d
	199.4	f≇•Th	-	22.4 min	565.8	*'Sc	45	18 min
1	0.40	In Mo	60	- 14.6 min	565.9	IS Dy	4	2.36 hr
	507.5	121Te	24	17.0 d	569.3	1 ³¹ Cs	35	2.07 yr
5	507.9	**Zr	100	17.0 hr	\$70.5	156mHo	8	30 yr
IX/	\$09.8	Sec.11	A TN	12.0 d	572.9	121 Te	100	II 17.0 VOI EÓN
LV	510.0	MSc D4	~ 60 /	125 Imin	580.0	in bain	100	1 22.0 min LEON
3	511.0	"Co		12.8 hr	583.1	Tue Lf		xa:Th series
		^{ae} Hr	B	17.6 min	585.0	15 Ba	2	11.5 d
	IDI	^a Co	ÓN		588.3	D Ha	D ⁸	
			UI		588.6	P sm Zr D	100	IU 4.4 Lmin AD
		**Zr	81	78 hr	590.8	Mo	80	14.6 min
		=Na		2.58 yr	590.9	""Pm	4	53.1 hr
		⇒Zn	l l	243 d	591.5	I HEU	12	lo vr
		**Ni		36.0 hr	595.8	**As	100	17.5 d
		"Rh		210 d	600.4	Sb	53	2 yr
2				(2.5 yr)	601.1	Ga	ð	14.3 Nr
	×11.6	"Zn	_	2.2 min	602.I	in le	6	24.8 mm
	9.119	""Ru-	100	1.02 yr	602.6	1 SD	100	60.9 d
		('**Rh)		(JU sec)	-004.Z	-1r	15	/4.4 d
7. A	CI 4 0	66.75 E			40	131/2-	100	2.07

					·		_	
	Ener	150-	ln~ ten	Vida-	Ener	150-	In- ten	Vida-
	gia.	topo.	SL-	Media	y.a.	topo	3.	Redia
	KeV		dad		KEV .		090	a na
-1	104.6	1075 h	18	20 vr	6857	414	100	74 0. br
	609.4	50 51Ti	ĩ	5.79 min	692.5	1-56	5	2.75 d
	608.5	74A.	- r	17.5 d	695.5	1º Mo	45	14.6 min
	609 3	21181		= Ra series	695.8	129"Te	100	33.5 d
	610.2	IM Ru	8	38.9 d	696.4	mpr	100	17.3 min
	612.3	192]1	10	74.4 d	697.5	Incut Rh	12	210 d
	616.4	HTTO'S	100	10.0 min				(2.5 yr)
	617.0	™Br	100	17.6 min	698.3	SEBr	33	35.87 hr
	618.1	1#3W	23 -	24.0 hr	702.5	MND	100	2.03 · 104 yr
	619.0	**Br	50	35.87 hr	704.3	1 1	3	17.6 min
	620.0	1318a	2	11.5 d	706.4	(<u></u>	20	253 d
	620.5	IMDy	3	2,36 hr	711.6	Ho	65	30 yr
	622.3	MRU	30	1.02 yr	714.3	1510	.	30.0 min
6		(**Rh)	FO Y	(30 sec)	715.2	1NO	18	2,30 Ar
	626.6	FLAMMAM		14.0 min	717.1	NOS NOS	10	93.0 G
	630.1 V	1-612	14		7191	1310-		23 mm
	631.5		20	2 47 mia	710.1	HIC	17	33 hr
5	632.9	IMPA	120	167 hr	722 1	1315		8 08 d
Ŕ	633.0	ISIDA	12	7 16 br	777 R	124Sh	10	60.9 d
F	633.1 614 6	1445	24	17.5 4	723 1	IMEN	65	16 vr
K III	615.8	1736	36	70 vr	724.0	**Zr	100	65 d
	616 4	1311	12	508 d	724.3	HANRI	40	4,5 hr
	640 4	*Br	131	17.6 min	725.1	334#Jn	4	50 d
5	641.5	IMRe	0.5	3.8 d	727.3	st=Bi	_	sarTh series
1	644.6	UHIT .	25	19.7 hr	739.9	*Mo	15	66 hr
	645.7	azaSp	8	60.9 d	741.0	1 Trn	22	85 d
	645.8	IA1O5	100	93.6- d	743.3	***Nb	100	60 sec
	649.3	**Se	15	18 min	743.5	1201	[] N]	25.4 min.
	654.4	¹³¹ Te	2	24.8 min	752.1	166 Ho	16	30 yr
TINT	654.8	PNant	28	1.8 hr	753.3	144]	10	13.1 d
UN	657.0	™As-	44	26.3 hr	754.0	LimCe	100	
	657.8	Mon Ag	100	253 d	756.6	^A Zr	80	b5 d
	658.1	**Nb	100	72.1 min	763,9	I AS	24	253 O · · · · · · · · · · · · · · · · · ·
	661,6	337#BA	100	2.6 min	765,8	42NP	100	
	661.6	^{12:} Cs	100	26.6 yr	766.8	10TKn	5125	LIZECAS
	a sara 🌡	((¹³⁷ Ba)		(Z.6 .min)	400.0	16.4	1	(2.3 yr)
	664,4	"Ce	15	33 br	767.3	"AS	0.2	20.3 M
	063,7	18.01	12	17.5 min	708.1	107337		740 br
	000.5	12C	100	13.1 6	116.9	KER-	100	35 27 hr
	00/,/ 470.0	13TTL	100	0.2 0	170.0	1010	12	66 hr
	430.6	144715	-	26.9 mm	179.6	HasE.		17.2 vr
	670,2	120		167 hr	786.5	1764		143 br
	674 0	INAL		236.4	792.0	1442	60	38 d
	(74.0	140.		45 hr	795 8	1347.	00	2.07 vr
	677 6	Hert	in	251 d	796.0	171E-	Ĩ	7.8 hr
		~ 6				-		

						<u> </u>				
	Enec		in- ten			Ener		19- 19-		
		lsó-		Vida-			156-		Vida-	
	gla.	tope.	3.	Aedia	(yta.	topo	51-	Øedia	
	KeV		dad			KeV		dad		
	798.7	NSC	20	25 1	nin	983.5	#Sc	100	44 hr	
	802.0	1 ²⁴ Cs	,	2.07	yε	995.3	163Dy	2	2.36 hr	
	810.3	*Co	100	71.3	d	997.2	13"Te	5	24.8 min	
	810.3	secon Ho	66	30	yr	1005.5	284Eu	50	16.0 yr	
	810.5	™Ga	4	14.3	'nr	1012.4	101 Mo	100	14.6 min	
	815.5	"#"La	44	40.27	hr	1014.1	"Mg	40	9.45 min	
	815.7	14 Tm	76	85	d	1037.4	*Sc	98	44 hr	
	\$18.0	110 ^m Ag		253	d	1039.0	≪Cu	100	S.I min	
	818.8	niman	23	54	min	1039.4	*Ga	100	21.1 min	
	827.8	*Br	30	35.87	hr .	1043.9	**Br	37	35.87 hr	
	\$28.0	**Se	45	18	min	1047.0	ie:="Rh	12	210 d	
	829.5	18#Rc	3	16.7	hr	2	877. 875		(2.5 yr)	
	831.0	How	12	30	y۳	1050.5	7ºGa	100	21.1 min	
	834.1	™Ga	100	14.3	hr	1050.5	Marku	5	1.02 yr	
6	18.34.8	³⁴ Mn	100	291	d		("*Rh)		(30 sec)	
	841.6	1×="EuM	100	9.35	hr	1050.6	72Ga	7	14.3 hr	
	844.0	= Mg	100	9.45	min	1076.6	"Rb	100	18.66 d	
BA	846.9	*Mn	100	2.58	br	1079.8	177Yb	30	1.9 hr	
5	860.5	1.1.1	- 1	sizTh se	ries	1085.8	TGe .	6	11.3 hr	
R.	863.5	"Co	1.2	71.3	d	1086.0	1ªEu	45	12.2 yr	
	867.5	**As	6.2	26.3	hr	1097.1	116 - in	70	54 min	
R	871.1	***Nb	100	6.6 -	min	1098.6	#Fe	100	45.1 d	
	871.1	MND	100	2.03.10*	yr	1115.4	4Zn	100	245 0	
	874.8	anO2		93.6	d	1115.4	-14	60	2.30 hr	
4	876.0	184RU		4.5	hr	1120.0	21481		The series	
<u> </u>	879.4	Tb	100	73.0	d	1120.3	-Sc	100	83.9 G	
	880.0	NOS	10	93.6	ď	1121.2	BIRD	100	1121 0	
	884.5	AB	74.	253	d	1130.0	INCLS .	0.5		
	889.4	*Sc	100	83.9	d	_1140.5	-So	1	2.75 0	
	894.3	184 Re	33	38	ď	1147.8	in le		17.0 hr	
	898.0	**Rb	63	17.8	mn	1147.9	121 HTT-	00		/
IIN	898.0		100		g	113/.5	-12 	100	5 74	IFON
UIN	902.8	in Ke	100		d V	1175.1	160TL	49	73 4	LLUN
	909.2	Zr	100	18	nr	11507	and	17	120 min	(R
	910.1	"Zn		2.2	min	1100./	INT-	14	1151 4	0
	911.0	AC		10 SC	TICS	1100.0	HOT	RIRI		2
	928.5 L	Tall C	1.2.1	S.191	min	1302.6	744.4			5
	931.3	Re	4	10.7	nr	1203.5	TEAL	10	763 hr	
	934.1	Ca	100	44	a	1213.0	1657.0	94	115.1 a	
	934.6	ND	100	10.1	9	1220 0	MAC	24	263 br	
	937.2	Ag	33	233	a hr	1228.0	1877.0	50	1151 4	
	938.4	11100	10	19.7	α(1231,0	17776	30	19 hr	
	963.5	EU	90	52.V	nt .	12440.7	12256		2.75 d	
	964.1	Letter	22	72.2	yr d	1250.0	50 SU	1	17.6 min	
	705.8 0(n 0	778 A -	~	/3.0		1257 5	11170	i i	115.1 d	
	708.8	105 D			h-	1260 4	12Ge	2	14.3 hr	
	779,9		-	4.03	814	1400.4				
		• •			2		-			

						-		
	Ene <u>r</u> gía. KeV	1 56≁ topo	in- ten si- dad	Vida- Media	Ener gía. KeV.	lsó- topo.	ln- ten si- dad	Vida- Media
	1266.0	JISi	100	2.62 hr	1481.7	4Ni	100	2 56 hr
	1271.6	1CPTb	23	73 d	1488.4	144Pr	20	17.2 min
	1274.3	434Eu	100	16.0 yr	1488.9	mpd	60	22.0 min
	1273.3	**A1	100	6.56 min	1507.7	1107/10	8	54 min
	1274.5	=Na	100	2.58 yr	1508.6	Zr	1 7	4.4 min
	1276.5	**Ga	2	14.3 hr	1524.7	**K	100	12.52 hr
	1276.8	IPTm	10	85 d	1532.7	14IMo	45	14.6 min
	1289.9	113 Cd	45	44 d ;	1575.5	HEPr	100	19.2 hr
	1291.5	*Fe	80	45.1 d	1576.1	117=Cd		3.0 hr
	1293.4	in="in	100	54 min	1580.5	""Ho	5	26.9 hr
	1293.6	"AY	100	110 min.	1588.3	^{##} Ac	-	232 Th series
	1296.9	4ºCa-	90	4.7 d	1595.3	444Eu.	10	16 yr
		47Sc		3.43 d	1595.4	"#"La	100	40.27 hr
	1300.0	143n	100	72 sec	1596.Z	7≕Ga	6	14.3 ht
	1311.9	ть	7	73 d	1642 0	"CI	100	37.29 min
- / ~	1311.6	SCAMMA	100	44 hr	1690.7	1=1Sb	50	60.9 d
∇	1315.0	1acmEu	9	9.35 hr	1778.9	JA"	100	2.31 min
	1317.2	₽ =Br	38	35.87 hr	1810.7	Mn.	25	2.58 hr
3/1	1325.5	1:1Sb	2	60.9 d	1836.1	**Rb	100	17.8 min
311	1332.4	*o*Co	1 1	10.5 min	1836.1	MΥ	100	104 d
ĘΠ	1332.4	#Co	100	S.24 yr	1860.4	¹² Ga	17	14.3 hr
니	1345.5	"Cu	100	J2.8 hr	1997,4	H7=Cd	I I	3.0 hr
71	1362.3	TZr -		17.0 hr	2090.6	1ª3Sh	7	60.9 d
	1364.8	1º1Cs	1 4	2.07 yr	2112.0	116 ^m in	20	54 min
VP	1367.5	T'Ge	3	11,3 hr	2112.8	™Mn	15	2.58 hr
1	1368.4	*'Na	90	🔽 15 🛛 hr	2118.6	**Rb	4.5	17.8 min
	1378.1	JM Ho	18	26.9 hr	.2166.8	2*CI	70	37.29 min
	1378.4	4"Ni	100	36.0 hr	2185.8	144Pr	50	17.2 min
	1384.0	1 Ag	22	253 d	2201.4	72Ga	14	14.3 hr
	1385.1	111Pd	60	22.0 min	2425.8	**AI -	7	6.56 min
	1388.9	133PEu	8	9.35 hr	2507.4	7ªGa	19	14.3 hr
TR	1407.5	132Eu	50	12.2 yr	2614.3	306 T	1-7-1	series
JT	1434.4	STV .	100	3.76 min	2677.6	MRb A		17.8 min U L E O N
	1436.8	#24Sb	2	60.9 d	2753.6	**Na	100	15 hr
	1458.9	pam	60	22.0 , min	3083	"Ca	100	8.8 min
	1460.7	w K	100	1.25-10° yr	3102.4	and the second s	100	5.05 min
	1474.7	#Br	28	35.87 hr	4071	PCa -	10	8.8 min CAS

REFERENCIAS

- Kruger, Paul. Principles of Activation Analysis, Wiley Interscience.
- Bowen, H. J. M., and Gibbons, D., Radioactivation -Analysis, Oxford at the Clarendon Press.
- Taylor, Denis, Neutron Irradiaction and Activation -Analysis, D. Van Nostrand Company, Inc.
- 4. Koch, R. C., Activation Analysis Handbook, Academic Press.
- Glasstone, S. y Sesonske, A., Ingenieria de Reactores res Nucleares, Editorial Reverte, S. A..
- Kaplan, I., Nuclear Physics, 2nd ed., Addison-Wesley, 1963.
- 7. Buchanan, J. D., Activation Analysis with a TRIGA -Reactor, General Atomic Division of General Dynamics, GA-2662, December 15, 1961.
- Knoll, F. Glenn, Radiation Detection and Measurement, John-Wiley & Sons.
- 9. Price, J. William, Nuclear Radiation Detection, Second Edition. McGraw-Hill, Series in Nuclear Ingine<u>e</u> ring.
- Zimmer, W. H., Systems Application Studies, What Affects a Gamma Spectrum, EG&G,ORTEC Physical Sciences Division, June 19, 1978.
- Carpenter, B. Stephen, D'Agostino, Michael D., Yule, Herbert P., Computers in Activation Analysis and Gamma-Ray Spectroscopy, Published by: Technical information Center/ U. S. Department of Energy.
- 12. Lenderer, C. Michael, Hollander, Jack M., Perlman, -Isadore, Table of Isotopes, Sixth Edition, John Wiley & Sons, Inc.
13. Handbook of Chemistry and Physics, 61st Edition 1980-1981, CRC Press.

¥.

- 14. Activation Analysis Using TRIGA Reactor, High-Resolution Gamma Spectrometer and Computer, Radiochemistry Research Laboratory, the Dow Chemical Co., Midland, --Mich..
- Radiological Health Handbook, U. S. Department of -Health. Education and Welfare, Public Health Service.
- 16. De Bruuin, M., Korthoven, P. J. M., Fease M. J. J. A. Van Peer, I. R. I. Report 133-73-17.
- 17. Elsevier Scientific Publishing Company, Amsterdam, -Analytica Chimica Acta, 74(1975) 269-274.
- 18. Lustenhouwer, J. W. A., Van der Sloot, H. A. Das. H.-A., the Determination of Tungesten in Silicate Rocks, Reactor Centrum Nederland, Petten (N.- H.), the Netherlands, Radiochem. Radioanal. Letters 26(1) -57-66 (1976).
- Non-Destructive Determinacion of Tungesten in Molybdenum by Neutron Activation Analysis, from Multiple Gamma and X-Ray Peak Ratios, Analytica Chimica Acta, 74 (1975) 269-274.
- 20. Rowe, J. J., Steinnes, E., Instrumental Activation Analysis of Coal and Fly Ash with Thermal and Epither mal Neutrons, Journal of Radioanalytical Chemistry,-Vol. 37 (1977) 849-456.
- 21. Devoe, James R., Editor: Lafleur, Philip D. Assistant Editor; Modern Trends in Activation Analysis. National Bureau of Standards Special Publication 312, Volume I and II.
- 22. Instruments for Research and Aplied Sciences, EG&G, -ORTEC, Product and Aplication Information.
- F. Adams. R. Dams: Compilation of Gamma-Transition -Energies; J. Radioanal. Chem. 3 (1969).

