UNIVERSIDAD AUTONOMA DE NUEVO LEON FACULTAD DE INGENIERIA MECANICA Y ELECTRICA DIVISION DE ESTUDIOS DE POST-GRADO

DETERMINACION EXPERIMENTAL DE COEFICIENTES DE TRANSFERENCIA DE CALOR PARA CONVECCION LIBRE Y FORZADA

POR:

ING. JOEL GONZALEZ MARROQUIN

TESIS

EN OPCION AL GRADO DE MAESTRO EN CIENCIAS DE LA INGENIERIA MECANICA CON ESPECIALIDAD EN TERMICA Y FLUIDOS

SAN NICOLAS DE LOS GARZA, N. L. DICIEMBRE DE 1998

CULTAD DE INGENIERIA MECANICA Y ELECTRICA DIVISION DE ESTUDIOS DE POST-GRADO

UNIVERSIDAD AUTÓRIMA DE NUEVO LEÓN

DIREING. ODEL GONZALEZ MARROQUINECAS

TESIS

INGENIERIA MECANICA CON ESPECIALIDAD EN TERMICA Y FLUIDOS

IN NICOLAS DE LOS GARZA, N. L. DICIEMBRE DE 1998

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

UNIVERSIDAD AUTONOMA DE NUEVO LEON FACULTAD DE INGENIERIA MECANICA Y ELECTRICA DIVISION DE ESTUDIOS DE POST-GRADO

UNIVERSIDAD AUTÓROMA DE NUEVO LEÓN

ING. JOEL GONZALEZ MARROQUIN DIRECCIÓN GENERAL DE BIBLIOTECAS TESIS

EN OPCION AL GRADO DE MAESTRO EN CIENCIAS DE LA INGENIERIA MECANICA CON ESPECIALIDAD EN TERMICA Y FLUIDOS

SAN NICOLAS DE LOS GARZA, N. L. DICIEMBRE DE 1998

TM 25853 ·M2 FIME 1998 56

> FONDO TESIS

0129-67460

3

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN FACULTAD DE INGENIERÍA MECÁNICA Y ELÉCTRICA DIVISIÓN DE ESTUDIOS DE POST-GRADO

San Nicolás de los Garza, N.L.

Diciembre de 1998

DEDICATORIAS

A mis padres : Sr. Telésforo González González y Sra. Enriqueta Marroquín de González. A mi esposa : Sra. Olga María Ibarra de González A mis hijos : Ana María, Joel y Oiga María. A mis familiares y amigos.

UNA mis maestros AD AUTÓNOMA DE NUEVO LEÓN

Pues todos y cada uno de ellos han influido en mi vida, estimulando mi desarrollo y superación, espero no defraudarles.

AGRADECIMIENTOS

A Dios Quién nos permite el Ser y Hacer en la vida y a Quién rogamos nos de la inspiración para que nuestro Ser y Hacer tenga valor y le sean gratos.

Al M. C. Guadalupe E. Cedillo Garza por su asesoría y su valioso ejemplo.

A los M. C. Roberto Villarreal Garza y José Luís Castillo Ocañas por su ayuda y estímulo.

Un agradecimiento muy especial al Ing. Rodolfo Villarreal Garza y al Sr. Alfonso Mayorga quiénes realizaron, junto con muchos otros compañeros de taller, las adecuaciones y mejoras del equipo de pruebas. A la Ing. Mónica Alcalá por permitirnos el uso del equipo y las instalaciones del Laboratorio de la Facultad de Ciencias Químicas.

A los Ings. Clemente Ávalos y Gabino Morales y al Dr. Jesús Garza Paz por su asesoría y cooperación.

Al Ing. Jesús Luís de la Torre Saldaña por su empuje y determinación y a su hijo Jesús Manuel por su colaboración en la conformación del escrito.

Y en general a todas aquellas personas que de una u otra forma contribuyeron en el desarrollo de esta tesis.

ÍNDICE

	apítulo Alere flan Veritat	DALLA	Página
RSI	PRÓ	DOGO.	9
E	SÍN	TESIS.	
K	1. INTI	RODUCCIÓN	13
	1.6	Objetivo	13
	1.2	Justificación	14
UNI	VER3S	Metodología	LEÓN
	1.4	Límites de muestra	15 🛛 🗷
]	DIR.5	Tamaño de la muestra RAL DE BIBLIOTECA	<u>S</u> 16
	2. ANT	TECEDENTES	17
	2.1	Antecedentes	17
	3. CON	NVECCIÓN LIBRE O NATURAL	19
	3.1	Modos de Transferencia de Calor	19
	3.2	Introducción al Estudio de la Transferencia de	
		Calor por Convección	
	3.3	Teoría General de la Transferencia de Calor Convectiva	
		3.3.1 Definición del Coeficiente de Transferencia de Cal	or 30

3.3.2 Coeficiente Total de Transferencia de Calor
3.3.3. Coeficiente de Transferencia de Calor para Flujo de
Fluidos en Tubos para Convección Libe o Natural
4. CONVECCIÓN FORZADA
4.1 Coeficientes de Transferencia de Calor para Flujo de
Fluidos en Tubos para Convección Forzada
4.2 Convección Libre y Forzada Combinadas
4.3 Coeficientes de Transferencia de Calor para Condensación
de Vapor en Superficies Verticales 45
5. DESCRIPCIÓN DEL EQUIPO DE PRUEBA
5.1 Descripción General
5.1.1 Primer Sub-ensamble 51
5,1.2 Segundo Sub-ensamble
5.1.3 Fluido usado en la unidad 52
5.2 Descripción Particular
5.2.1 Tanque de Alimentación de Altura Constante
UNIVERS 5.2.2 Cámara de Prueba ONA DE NUEVO LE55
5.2.3 Recipiente de Condensados 56
5.2.4 La Alimentación de Vapor
5.2.5 Termopares en la Sección de Prueba 57
5.2.6 Tuberías, Válvulas y Drenajes 57
5.3 Instrucciones de Operación General 58
5.3.1 Medidas de Seguridad 58
5.3.2 Conexiones del Proceso
5.3.3 Flujo de Agua 62
5.3.4 Flujo de Vapor
5.3.5 Ajuste de la Presión de la Cámara de Vapor

			5.3.6	Recolección de Condensados	63
			5.3.7 1	Procedimiento de Apagado	64
	6.	OBJ	TENCIÓ	ÓN DE DATOS PARA CONVECCIÓN LIBRE	65
		6.1	Proced	imiento para la Obtención de Datos para	
			Convec	zción Libre	65
	7.	OB	TENCIO	ÓN DE DATOS PARA CONVECCIÓN FORZAD	A 68
		7.1	Proced	imiento para la Obtención de Datos para	
	IT	ONO	Conve	ción Forzada	68
	8.	CÁJ	LCULO	S DE COEFICIENTES DE TRANSFERENCIA	
5			CALO		71
RSI		8.1	Bases.		71
B		\mathcal{D}	8.1.1	Cálculo del Calor Recibido por el Agua	72
E	$\left \right $		8.1.2	Cálculo del Calor Cedido por el Vapor	73
	\mathcal{A}		8.1.3	Cálculo del Número de Reynolds	74
			8.1.4	Cálculo del Coeficiente de Transferencia de Calor	75
UN	[V]	ER 8.2	8.1.5 Cálcul	Cálculo de los Números de Nusselt Experimentales os Numéricos	
	9.	DE	RIVAC	IÓN DE ECUACIÓN MATEMÁTICA	S 85
		9.1	Bases		85
		9.2	Deriva	ción de Ecuación para Datos Registrados en	
			Conve	cción Libre	86
			9.2.1	Cálculo del número de Nusselt por la Ecuación	
				de Brown y Gauvin	86
				9.2.1.1 Operaciones	88
			9.2.2	Cálculo de la relación Nu _{B&G} /Gz ^{1/3}	92
			9.2.3	Cálculo de la relación Nu _{EXP} /Gz ^{1/3}	92

9.2.4 Comparación de Datos Experimentales con la
Ecuación de Brown y Gauvin
9.2.5 Derivación de Ecuación Matemática para
Convección Libre
9.3 Derivación de Ecuación para Datos Registrados para
Convección Forzada
9.3.1 Cálculo de Datos Experimentales con Ecuación
de Brown y Gauvin (Convección Forzada)
9.3.2 Derivación de Ecuación Matemática en
Alere Flamman Convección Forzada
10. ANÁLISIS E INTERPRETACIÓN DE LOS RESULTADOS . 100
10.1 Determinación de Parámetros
10.2 Observaciones
10.2.1 Observaciones en Pruebas de Convección Libre 102
10.2.2 Observaciones en Pruebas de Convección Forzada 104
10.3 Clasificación del Régimen de Flujo de los
UNIVERSIDatos Experimentales
10.4 Resumen 107
11. CONCLUSIONES Y RECOMENDACIONES
11.1 Conclusiones y Recomendaciones 109
BIBLIOGRAFÍA112
LISTADO DE TABLAS 114
LISTADO DE GRÁFICAS 115

PRÓLOGO

La Transferencia de Calor es un fenómeno que se presenta ampliamente en la naturaleza y juega un papel muy importante en muchos procesos industriales y en áreas vitales como lo son la producción y la conversión de energía. La gran variedad de problemas que se afrontan, la convierten en un campo de estudio muy extenso y complejo, donde se involucran procesos de Conducción, Radiación y Convección del calor, que son modos o formas distintivas de la Transferencia de Calor para su estudio. Es este último modo o forma de Transferencia de Calor, lo que constituye nuestro foco de atención en esta Tesis.

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

La Transferencia de Calor por Convección se involucra con problemas donde el calor se transfiere de una superficie a un fluido en movimiento o viceversa, por lo cual está muy estrechamente ligada al flujo de fluidos, a las propiedades termofísicas de éstos y a características de la geometría y temperatura de las superficies, con todo esto, resulta difícil establecer modelos matemáticos con ecuaciones diferenciales de fácil solución para este tipo de problemas, de ahí que, en la práctica de la ingeniería, en este campo se tenga que recurrir y confiar en la investigación experimental, de la cual se derivan fórmulas empíricas para la evaluación de los coeficientes de transferencia de calor por convección, que son necesarios para aplicarse en la solución de los problemas.

Del análisis y conclusiones de la experimentación se obtiene una mayor comprensión del fenómeno y las fórmulas de ahí derivadas, cuando están bien fundamentadas contribuyen para que el ingeniero al aplicarlas en el diseño obtenga mejores y más eficientes equipos.

La determinación experimental de coeficientes de transferencia de calor para convección libre y forzada es el objetivo esencial de la tesis que aquí presento.

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN DIRECCIÓN GENERAL DE BIBLIOTECAS

SÍNTESIS

El objetivo esencial de la tesis se consigue en los capítulos 8 y 9 donde se determinan coeficientes de transferencia de calor para convección libre y forzada usando datos obtenidos por experimentación con el fin de establecer una o varias ecuaciones que lo relacionen con parámetros adimensionales, que se fundamentan en las propiedades de los fluidos, la naturaleza de los flujos y las características geométricas de las superficies transmisoras.

Én los capítulos 1 y 2 se señala : El objetivo, la justificación, la metodología y las bases de esta investigación.

En los capítulos 3 y 4 se dan los fundamentos teóricos de la convección y la terminología utilizada a fin de conseguir los objetivos señalados.

Los capítulos 5, 6 y 7 son usados para describir el equipo de prueba y para señalar los procedimientos que nos permitan obtener los datos correctos necesarios para realizar los cálculos deseados.

En el capítulo 10 se analizan e interpretan los resultados obtenidos y en el capítulo 11 se establecen las conclusiones y recomendaciones de esta investigación.

El fluido para el cual se realizan los cálculos es agua que circula por el interior de un tubo vertical de cobre bajo régimen de flujo libre y forzado.

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN © DIRECCIÓN GENERAL DE BIBLIOTECAS

CAPÍTULO 1

Determinar los coeficientes de transferencia de calor para convección libre y forzada entre el agua usada en el sistema como fluido refrigerante y la superficie interior de un tubo vertical por donde circula. Y con los resultados obtenidos derivar una o varias ecuaciones matemáticas que relacionen estos coeficientes con parámetros adimensionales característicos de éste campo de estudio como el número de Nusselt, el número de Graets, el número de Reynolds, el número de Prandt, etc., los cuales se fundamentan en relaciones de propiedades termofísicas del fluido, y características del tipo de flujo y de la geometría de las superficies.

1.2 Justificación

La práctica de la ingeniería en el campo de la convección requiere con mayor frecuencia del cálculo de coeficientes de transferencia de calor a partir de correlaciones de datos experimentales, esto se debe principalmente, a que las ecuaciones diferenciales que la rigen son excesivamente complejas y solo se pueden aplicar a flujos simples que se presentan muy poco en las aplicaciones.

Gran parte de la investigación realizada en este campo opera bajo condiciones de régimen de flujo o Libre (natural) o Forzada pero no en el régimen Libre y Forzado combinados sobre el cual pretendemos ahondar en esta investigación.

1.3 Metodología

Definir los términos relacionados con la transferencia de calor para convección libre (o natural) y forzada y por experimentación con el equipo del Laboratorio de Transferencia de Calor, llamado Sistema de Convección Libre y Forzada (modelo 9054 marca Scott) se obtendrán los datos de variables involucradas como : Flujos de agua y condensados, temperaturas y presiones ; primero para condiciones de flujo libre con diferentes alturas de vertedero y luego para flujo forzado con diferentes números de Reynold y todas las pruebas para la misma presión de cámara de vapor.

Con los datos obtenidos y aplicando balances de energía y ecuaciones de flujo se determinarán los coeficientes de transferencia de calor y por análisis y gráficas de los valores medidos y calculados se obtendrán las correlaciones matemáticas entre éstos y las variables involucradas representadas en parámetros adimensionales.

1.4 Límites de muestra

- 1.- Fluidos utilizados en el sistema:
 - Agua utilizada como fluido refrigerante, circula por dentro de la tubería y es la base de nuestro estudio.
 - b) Vapor de agua usado como fluido aportador de calor, se aplica a la parte externa del tubo de prueba como vapor saturado y con una presión de cámara

3.- Régimen de flujo:

Laminar y turbulento para convección libre y forzada combinadas.

4.- Todas las mediciones se hacen bajo condiciones de estabilidad.

1.5 Tamaño de muestra:

libre.

Una vez puesto en funcionamiento el equipo de experimentación se fija una altura de vertedero de 3 cm. y cuando el sistema se encuentra en estabilidad se registran los datos correspondientes de presiones, temperaturas y flujos, una vez concluido esto, se repite la operación para otras alturas de vertedero: 1 cm.; 0 cm. y -1.8 cm. registrando como antes los datos de prueba. Todas estas lecturas serán registradas en convección

También se realizarán pruebas similares, pero sin operar el sistema del vertedero, para lo cual se cierra la válvula correspondiente, y el control del flujo queda por la válvula de alimentación de agua, así, para diferentes ajustes de ella, que proporcionen números de Reynold en los rangos de: 100 a 1000; 2000 a 6000; 6000 a 10000 y > 10000; se corren las pruebas y se registran los datos como antes. Estas lecturas se registrarán en convección forzada.

UNIVE A fin de obtener datos suficientes y confiables es recomendable repetir la experimentación por lo menos unas 4 veces.

DIRECCIÓN GENERAL DE BIBLIOTECAS

CAPÍTULO 2

ANTECEDENTES

2.1 Antecedentes

Ya se ha mencionado que la transferencia de calor por convección constituye un campo de estudio muy extenso y complicado, en el que no es fácil establecer modelos, de los cuales se obtengan ecuaciones matemáticas, que den solución a los problemas encontrados ; por esto, resulta evidente, el que un gran número de investigaciones experimentales, se hayan y se estén desarrollando, no solo para conocer mejor el fenómeno, sino también, para determinar los coeficientes de transferencia de calor, que son la base de los cálculos en las aplicaciones ; sin embargo, lo extenso y complicado del campo genera mucha variación en el proceso de la investigación, pues hay que considerar influencias tales como : la naturaleza de los fluidos, los tipos de flujo, las características de las superficies en contacto con los fluidos, además de las diferencias de temperaturas y presiones.

Con relación a la investigación propuesta en esta tesis, de la bibliografía consultada, encontramos 2 trabajos desarrollados con alguna similitud pero no iguales, pues hay sus diferencias en el tipo de fluido o en el régimen de flujo, ver tabla comparativa 2.1, de ahí que la consideremos como nueva aportación.

Tabla 2.1 Comparación de Trabajos de Investigación

VERSIDA

UNI

	Comparación	Solución Propuesta	$N_{u} = 8.76Gz^{1/3} - 0.942N_{uB\&G}$ *	N _u =6.58Gz ^{1/3} - 0.87N _{uB&G} ◆	N _u =53.1Gz ^{1/3} - 7.5N _{uB&G}	$N_{uBRG} = 1.7 \left(\frac{\mu_B}{\mu_w} \right)^{0.14} \left[G_Z + 0.012 \left(G_Z G_{r^{1/3}} \right)^{4/3} \right]^{1/3}$
	cteristica de C	Régimen de ſlujo	ŝ	Laminar y turbulento	Laminar	Laminar
X	Carr	Fluido		Agua	Agua	Aire
		Tipo de convección		Libre y forzada	Libre y Forzada	L íbre y Forzada
ER	SIC	Posición de Tubo	AU7	Vertical	Vertical Vertical	Vertical Vertical
RI	Trabajo de Investigación		 Determinación experimental de conficientas de transferencia de calor nor 	convección libre y forzada. Participantes: Ing. Joel González M. e Ing. Jesús Luis de la Torre S.	 Investigación experimental de razones de transferencia de calor convectivo libre y forzado combinados en un tubo "U" vertical con una rama calentada. Participantes: P. K. Sarma, C.V.N. Sastry y Narayama Murthy. 	 Convección libre y forzada de aire en tubos verticales Participantes: C. K. Brown y W. H. Gauvin

* Ver rango de aplicación en el Capítulo 11

18

CAPÍTULO 3

CONVECCIÓN LIBRE O NATURAL

3.1 Modos de Transferencia de Calor

UNIVERSIDAD AUTÓNOMA DE NUEVO LEON

En la termodinámica el calor se define como la energía que se transfiere debido a gradientes o diferencias de temperatura. De manera consistente con este punto de vista, la termodinámica solo reconoce dos modos de transferencia de calor: conducción y radiación. Por ejemplo, la transferencia de calor a través de la pared de una tubería de acero se realiza por conducción, mientras que la transferencia de calor del Sol a la Tierra se efectúa por radiación térmica. Estas modalidades de transferencia de calor se producen a escala molecular o subatómica. En aire a presión normal la conducción se realiza por medio de moléculas que se desplazan distancias muy cortas (~ 0.65 μ m) antes de chocar e intercambiar energía con otra molécula. Por otro lado, la radiación se efectúa por medio de fotones que viajan casi sin encontrar obstáculos a través del aire, de una superficie a otra. Así, una diferencia importante entre la conducción y la radiación es que los portadores de energía en la conducción tienen un camino libre medio corto, mientras que en la radiación ocurre lo contrario. Sin embargo, en el aire y a presiones muy bajas, típicas en dispositivos de alto vacío, el camino libre medio de las moléculas puede ser mucho mayor que las dimensiones del dispositivo, de modo que las moléculas pueden desplazarse sin obstáculos de una superficie a otra. En este caso la transferencia de calor por medio de moléculas se rige por leyes análogas a las de radiación.

En virtud de su masa y su velocidad, un fluido puede transportar cantidad de movimiento. Al mismo tiempo, en virtud de su temperatura puede ser portador de energía. Estrictamente hablando, la convección es el transporte de energía por movimiento del medio (en este sentido, un sólido en movimiento también puede transportar energía por convección). En la ecuación de la energía para flujos

estacionarios

$$\dot{m}\Delta\left(h+\frac{V^2}{2}+gz\right)=\dot{Q}+W\dot{W}$$
(3.1),

la convección está implícita en el término $\dot{m}\Delta h$ del primer miembro, mientras que la transferencia de calor por conducción y radiación está representada por \hat{Q} en el segundo miembro. Sin embargo, en ingeniería el término convección se suele emplear de una manera más amplia a fin de incluir la transferencia de calor desde una superficie a un fluido en movimiento, llamada transferencia de calor por convección, a pesar que la conducción y la radiación desempeñan un papel preponderante cerca de la superficie, donde el fluido está en reposo. En este sentido la convección se considera como un modo distinto de transferencia de calor. Dos ejemplos de transferencia de calor por convección son la transferencia en el radiador de un automóvil y en el fuselaje de un vehículo supersónico. La convección suele asociarse a un cambio de fase, por ejemplo cuando el agua hierve en un recipiente o cuando el vapor se condensa en el condensador de una central eléctrica. Debido a la complejidad de estos procesos, la ebullición y la condensación suelen considerarse como procesos distintos de transferencia de calor.

3.2 Introducción al Estudio de la Transferencia de Calor por Convección.

Como se explicó antes, la convección o transferencia de calor convectiva es el término que se usa para describir la transferencia de calor de una superficie a un fluido en movimiento, como muestra la Fig. 3.1. La superficie puede ser el interior de una tubería, el fuselaje de un avión supersónico o la interfase entre el agua y el aire en una torre de enfriamiento. El flujo puede ser forzado, como en el caso de un líquido que se bombea a través de una tubería o del aire sobre un avión que surca la atmósfera. Por otro lado, el flujo podría ser natural (o libre), causado por fuerzas de empuje debidas a una diferencia de densidad, como en el caso de una torre de enfriamiento de corriente natural. Estos dos tipos de flujo pueden ser internos como en la tubería, o externos, como el flujo sobre el avión. Además, un flujo, ya sea forzado o natural, puede ser laminar o turbulento; el flujo laminar es más común cuando las velocidades son bajas, las dimensiones son pequeñas y los fluidos son más viscosos. El flujo en una tubería llega a ser turbulento cuando el grupo adimensional llamado número de Reynolds, $Re_D = V D/\nu$, es mayor que 2300, donde V es la velocidad (m/s), D es el diámetro de la tubería (m), y ν es la viscosidad cinemática del fluido (m²/s). La velocidad de transferencia de calor tiende a ser mucho mayor en los flujos turbulentos que en los laminares, debido a la mezcla violenta que sufre el fluido. La figura 3.2 muestra algunos tipos de flujos frecuentes.

Figura 3.1 Esquema de la transferencia de calor convectiva a un fluido a temperatura T_e que fluye con velocidad V sobre una superfície a la temperatura T_s .

En general, la velocidad de transferencia de calor por convección es una función complicada de la geometría y la temperatura de las superficies, de la temperatura y la velocidad del fluido y de las propiedades termofísicas de éste. En el caso de un flujo forzado externo, la velocidad de transferencia de calor es aproximadamente proporcional a la diferencia entre la temperatura de la superficie T_s y la temperatura de la corriente libre del fluido T_e . La constante de proporcionalidad se conoce como *coeficiente de transferencia de calor por convección* h_c :

$$Q_s = h_c \Delta T \tag{3.2}$$

donde $\Delta T = T_s - T_e$, \dot{Q}_s es el flujo de calor de la superficie al fluido (W/m²) y h_c tiene unidades de (W/m²K). La ecuación (3.2) se suele llamar ley de enfriamiento de Newton, aunque más bien se trata de una definición de h_c y no de una verdadera ley física. La situación es más complicada en el caso de convección natural. Si el flujo es laminar, \dot{Q}_s varía como $\Delta T^{5/4}$; si el flujo es turbulento, varía como $\Delta T^{4/3}$.

Figura 3.2 Algunos flujos típicos. (a) Flujo forzado en una tubería, $Re_D \approx 50\ 000$. En la sección inicial el flujo es laminar debido a la entrada en forma de campana, pero se vuelve turbulento corriente abajo. (b) $Re_D \approx 25$. (c) Flujo forzado a través de un haz de tubos como los que se encuentran en un intercambiador de calor de coraza y tubos. (d) Capas límites laminares y turbulentas en la convección natural sobre paredes verticales. (e) Convección natural laminar alrededor de una placa horizontal calentada. (f) Convección natural celular en una capa horizontal de fluido confinado.

De cualquier manera, resulta conveniente definir un coeficiente de transferencia de calor por medio de la ecuación (3.2); entonces h_c varía como $\Delta T^{1/4}$ en flujos laminares y como $\Delta T^{1/3}$ en flujos turbulentos.

Un problema de importancia práctica es el de la transferencia de calor por convección a un fluido que circula por dentro de una tubería, como suele ocurrir en los intercambiadores de calor, en los condensadores y en varios tipos de calderas. Cuando se usa la ecuación (3.2) para flujos internos, $\Delta T = T_s - T_b$, donde T_b es una temperatura media del fluido, la cual se conoce como **temperatura de masa** o temperatura media de mezcla. Aquí bastará observar que en la ecuación de la energía para flujos estacionarios [Ec. (3.1)] se a tomado también la entalpia de masa y T_b es la temperatura correspondiente. Si la temperatura de la pared de la tubería T_s es uniforme sobre toda su longitud y el flujo es laminar (Re_D \leq 2300), entonces el coeficiente de transferencia de calor lejos de la entrada de la tubería, está dado por la relación exacta

$$h_c = \frac{3.66k}{D}$$

ł

donde k es la conductividad térmica del fluido y D es el diámetro de la tubería. Nótese que el coeficiente de transferencia de calor es directamente proporcional a la conductividad térmica, e inversamente proporcional al diámetro de la tubería y, lo que quizás cause sorpresa, independiente de la velocidad de flujo. Por otra parte, en el caso de un flujo totalmente turbulento (Re_D \geq 10 000), h_c se expresa de manera aproximada con la siguiente correlación bastante complicada de datos experimentales:

$$h_{c} = 0.023 \frac{V^{0.8} k^{0.6} (\rho c_{p})^{0.4}}{D^{0.2} v^{0.4}}$$
(3.4).

(3.3)

En contraste con el caso del flujo laminar, ahora h_c depende fuertemente de la velocidad, V, pero débilmente del diámetro. Otras propiedades del fluido que intervienen en la relación, además de la conductividad térmica, son: la viscosidad cinemática, v; la densidad, ρ ; y el calor específico, c_p. Las ecuaciones (3.3) y (3.4) sólo son válidas a cierta distancia de la entrada del tubo e indican que, en dicha región, el coeficiente de transferencia de calor no depende de la posición a lo largo del tubo. Cerca de la entrada los coeficientes de transferencia de calor tienden a ser más elevados debido a la producción de vórtices a gran escala por desviaciones y esquinas pronunciadas, y a los efectos del calentamiento repentino del fluido.

Figura 3.3 Capa limite en convección natural sobre una pared vertical, mostrando la variación del coeficiente de transferencia de calor local. En los gases la transición entre flujos laminar y turbulento ocurre cuando el número de Grashof alcanza un valor aproximado de 10⁹; por lo tanto, $x_{r} \left[10^{9} v^{2} / \beta \Delta T \right]^{1}_{3}$.

La figura 3.3 muestra un flujo por convección natural sobre una superficie vertical calentada, así como un esquema de la variación asociada de h_c a lo largo de la superficie. Se muestra la transición de una capa límite laminar a una turbulenta. En los gases la posición de la transición está determinada por el valor crítico de un grupo adimensional llamado **número de Grashof**. El número de Grashof se define como $Gr_x = (\beta \Delta T)gx^3/v^2$, donde $\Delta T = T_s - T_e$, g es la aceleración debida a la gravedad (m/s²), x es la distancia

desde la base de la superficie, donde empieza la capa límite, y β es el coeficiente de dilatación volumétrica, el cual para un gas ideal, es simplemente 1/T, donde T es la temperatura absoluta (K). En una pared vertical, la transición ocurre cuando Gr_x $\approx 10^9$. Los experimentos muestran que en el caso del aire a temperaturas normales, el coeficiente de transferencía de calor para la convección natural sobre una pared vertical puede aproximarse por medio de las siguientes fórmulas:

Puesto que estas ecuaciones tienen dimensiones, es necesario especificar las unidades de h_c, ΔT y x, o sea (W/m²K), (K) y (m), respectivamente. Obsérvese que h_c varía como x^{-1/4} en la región laminar, pero es independiente de x en la región turbulenta.

Es común que sólo se desee conocer la transferencia de calor total desde una superficie y que la variación del flujo de calor sobre dicha superficie no interese demasiado. Para este caso, es conveniente definir un coeficiente de transferencia de calor medio \overline{h}_c para una superficie isotérmica de área A por medio de la relación

$$\hat{Q} = h_c A (T_s - T_e) \tag{3.7}$$

de tal manera que la velocidad de la transferencia de calor, \dot{Q} , sea fácil de calcular. La relación entre \tilde{h}_c y h_c se obtiene de la siguiente forma: para el flujo sobre una superficie de ancho W y longitud L, como lo que se muestra en la figura 3.4,

$$d\dot{Q} = h_{e}(T_{s} - T_{e})Wdx$$
$$\dot{Q} = \int_{0}^{L} h_{e}(T_{s} - T_{e})Wdx$$

es decir,

$$\dot{Q} = \left(\frac{1}{A}\int_{0}^{A}h_{t} dA\right)A(T_{s} - T_{e}), \qquad \text{donde } A = WL, \, dA = Wdx \qquad (3.8)$$

si $(T_s - T_e)$ es independiente de x. Puesto que T_e es en general constante, esta condición requiere que la pared sea isotérmica. Así pues, comparando las ecuaciones (3.7) y (3.8),

$$\overline{h}_{c} = \frac{1}{A} \int_{0}^{A} h_{c} dA \qquad (3.9).$$

ĥ, $(W/m^2 K)$ Flujo y fluido Convección libre, aire 3 - 2515-100 Convección libre, agua Convección forzada, aire 10 - 200Convección forzada, agua 50 - 10 000 Convección forzada, sodio líquido 10 000 - 100 000 Condensación de vapor 5 000 - 50 000 Ebullición de agua 3 000 - 100 000

Tabla 3.1 Ordenes de magnitud de algunos coeficientes de transferencia de calor medio.

La superficie puede no ser isotérmica; por ejemplo, puede tratarse de una pared calentada eléctricamente de manera que el flujo \hat{Q}_s sea uniforme sobre su superficie. En tal caso, la definición del coeficiente de transferencia de calor medio se vuelve más complicada. La tabla 3.1 proporciona los valores de los órdenes de magnitud de algunos coeficientes de transferencia de calor medio para diversas circunstancias. En general, un coeficiente de transferencia de calor elevado está asociado con altas conductividades térmicas de los fluidos, altas velocidades de flujo y superficies pequeñas. Sin embargo, los altos coeficientes de transferencia de calor para el agua en ebullición y el vapor en condensación tienen otra causa como la elevada entalpia de cambio de fase (calor latente) es un factor determinante. La complejidad de la mayoría de los casos en los que interviene la transferencia de calor por convección hace imposible un análisis exacto y por lo tanto se deberán utilizar correlaciones de datos experimentales. Para una situación particular pueden existir diversas correlaciones, procedentes por ejemplo de laboratorio de investigación como se realiza en la tesis.

3.3 Teoría General de Transferencia de Calor Convectiva

Como se había mencionado antes, se entiende por transporte convectivo como el mecanismo por el cual la energía térmica es transferida dentro de un fluido o entre un fluido y una superficie. En contraste a la transferencia de calor por conducción, en la que la energía es transmitida de una molécula a otra de energía térmica más baja, el proceso convectivo ocurre principalmente a causa del movimiento relativo del grueso de fluido desde el punto de vista microscópico. Así, la transferencia de calor por convección depende de las leyes del flujo de fluidos y, por esto, es complicada en un número de factores variables que son las propiedades del fluido y también las del sistema de flujo. Estos parámetros, muchos de los cuales son térmicamente dependientes entre sí, incluyen: densidad, calor específico, conductividad térmica y viscosidad del fluido; también como propiedades del sistema de flujo, tales como: velocidad del fluido, grado de mezclado o turbulencia, y el tamaño, forma e intensidad del campo térmico.

Hay dos modos básicos de transferencia de calor convectiva. El primero ocurre cuando el movimiento del grueso de fluido es inducido enteramente por gradientes de densidad dentro del fluido en sí mismo que son generados por diferencias de temperatura en el sistema. Éste es conocido como la convección natural o libre. Un ejemplo de este proceso es la circulación natural y de aquí el transporte de calor que ocurre cuando un tanque de líquido es calentado desde su parte inferior por una placa caliente o un quemador.

Cuando el campo de flujo es impuesto mecánicamente sobre un fluido a través del cual los gradientes térmicos están ocurriendo, el proceso es denominado convección forzada. Ejemplos típicos de tales procesos incluyen sistemas de calentamiento y enfriamiento domésticos, donde el aire es circulado por sopladores a través de una superficie de intercambio de calor y luego dentro de un cuarto; e intercambiadores de calor de coraza y tubos en los que un líquido en su interior es bombeado y calentado por un vapor que se condensa en la cubierta o espacio anular alrededor del tubo. Así, muchas características de flujo diferentes surgen y la transferencia de calor convectiva dependiente de tales situaciones debe ser analizada y clasificada de acuerdo al comportamiento de flujo.

3.3.1 Definición del Coeficiente de Transferencia de Calor

La razón de la transferencia de calor entre un fluido y una superficie fue primero propuesta por Newton a ser proporcional al área a través de la cual el calor fue transferido y la diferencia de temperaturas entre la superficie y el fluido. Matemáticamente esto puede ser expresado para una sección diferencial de superficie como:

DIRECCIÓN GENERAL DE BIBLIOTECAS

$$dQ = h_x (T_s - T_f) dA \tag{3.10}$$

donde h_x , el coeficiente de proporcionalidad, es denominado el coeficiente de transferencia de calor local, T_s es la temperatura de superficie y T_f es la temperatura promedio del fluido.

Ha sido sugerido que la resistencia principal a la transferencia de calor ocurre en una capa delgada de fluido de espesor y, que es adyacente a la superficie.

UNIVERSIDAD AUTÓRER DE NUEVO LEÓN

DIRECCIÓN GENERAL DE BIBLIOTECAS

donde k es la conductividad térmica del fluido y $\Delta T = T_s - T_f$ es la fuerza impulsora de temperatura. Una comparación de las ecuaciones (3.10) y (3.11) indica que

$$h_x = \frac{k}{y}$$
(3.12)

que sugiere que si un valor apropiado de y es conocido esta transferencia de calor puede ser tratada como un problema de conducción. Ahora consideramos este concepto de
"película" como totalmente ficticio aunque el término "coeficiente de película" está aún generalmente en uso.

Una definición más significativa del coeficiente de transferencia de calor surge cuando la ecuación (3.10) es integrada sobre un área de transferencia de calor finita.

$$Q = \iint_{A} h_{x} \Delta T dA = h A \Delta T_{lm}$$
(3.13)

aquí h llega a ser un coeficiente promedio y ΔT_{lm} es la fuerza impulsora media logarítmica definida por

$$\Delta T_{1m} = \frac{\Delta T_1 - \Delta T_2}{\ln\left(\frac{\Delta T_1}{\Delta T_2}\right)}$$
(3.14)

donde ΔT_1 y ΔT_2 son las diferencias de temperatura en los extremos de la superfície bajo consideración.

UNIVE^{3.3.2} Coeficiente Total de Transferencia de Calor EVO LEÓN

D Cuando consideramos el intercambio de calor que ocurre entre dos fluidos como en un intercambiador de calor tubular la figura 3.6 es implicada:

Figura 3.6 Diagrama de temperaturas entre dos fluidos que intercambian calor a través de una superficie. donde T_{fh} y T_{fc} son las temperaturas promedio de los fluidos caliente y frío respectivamente, y_h y y_c son los espesores de película ficticios de tales fluidos, y T_s , la temperatura de la superficie de la pared, que se asume uniforme. Para un área de superficie A el transporte de calor en estado fijo puede ser escrito como

$$Q = h_h A(T_{fh} - T_s) = h_C A(T_s - T_{fc})$$
(3.15).

Alternativamente podemos aplicar la ecuación de convección directamente a los fluidos caliente y frío:

$$\dot{Q} = UA(T_{fh} - T_{fc}) \tag{3.16}$$

donde U es un coeficiente total de transferencia de calor. Podemos obtener una relación entre U, h_h y h_c escribiendo de nuevo la ecuación (3.15)

$$T_{fh} - T_s = \frac{\dot{Q}}{\dot{h}_h A};$$
 $T_s - T_{fc} = \frac{\dot{Q}}{\dot{h}_h A};$ (3.17)

UN sumando estas ecuaciones se obtiene NOMA DE NUEVO LEÓN DIRECCIÓN GENERAL DE BIBLIOTECAS $T_{fh} - T_{fc} = \dot{Q}(\frac{1}{h_h A} + \frac{1}{h_c A})$ (3.18)

y comparando la ecuación (3.18) con la ecuación (3.16) se obtiene que

$$U = \frac{1}{\frac{1}{h_{h}} + \frac{1}{h_{c}} + \frac{y_{w}}{k_{w}}}$$
(3.19)

donde y_w/k_w representa la resistencia del tubo para el caso donde un gradiente térmico existe a través de la pared. Ha de ser notado también que la ecuación (3.19) es válida para una pared plana o para un tubo de pared delgada donde las áreas superficiales interior y exterior difieren solamente en una pequeña cantidad.

3.3.3 Coeficiente de Transferencia de Calor para Flujo de Fluidos en Tubos para Conveción Libre o Natural.

A causa de que la razón de transferencia de calor depende principalmente del movimiento natural del fluido en convección libre, es de este modo considerablemente determinada por el balance entre las fuerzas de flotación y de viscosidad. Las fuerzas inerciales son relativamente poco importantes bajo estas condiciones.

Considerando un balance de momentos sobre un elemento en forma de casquillo en el fluido, como se muestra en la Fig. 3.7, donde la transferencia de calor ocurre desde la superficie hacia el fluido, la fuerza de presión neta es: DIRECCIÓN $GF=-2\pi r \frac{\partial P}{\partial X} \Delta z \Delta r$ DE BIBLIOTECAS (3.20)

la fuerza viscosa neta es :

$$= -2\pi r \frac{\partial}{\partial r} \left(\frac{\mu}{g_c} r \frac{\partial u}{\partial r}\right) \Delta r \Delta z \qquad (3.21)$$

para movimiento laminar del fluido; y la fuerza del cuerpo (gravedad) es dada por

 $= -2\pi r \rho \frac{g}{g_c} \Delta r \Delta z$

Aplicando la segunda ley de Newton (la razón del cambio de momento es proporcional a las fuerzas aplicadas) se produce después de alguna simplificación

$$\mu\left(\frac{\partial^2 \mathbf{u}}{\partial \mathbf{r}^2} + \frac{1}{\mathbf{r}}\frac{\partial \mathbf{u}}{\partial \mathbf{r}}\right) + (\rho_{\mathbf{t}} \cdot \rho)\mathbf{g} = \mathbf{f}(\rho, \mathbf{u}, \frac{\partial \mathbf{u}}{\partial \mathbf{x}})$$
(3.23)

(3.22)

donde el lado derecho de la ecuación (3.23), representado funcionalmente, representa las fuerzas inerciales, y el gradiente de presión y la fuerza de gravedad están combinados como el efecto de flotación. Introduciendo el coeficiente de expansión térmica, β , y asumiendo que $\rho = \rho(t)$ solamente (válido para fluidos incompresibles) obtenemos

$$\mu\left(\frac{\partial^2 \mathbf{u}}{\partial r^2} + \frac{1}{r}\frac{\partial \mathbf{u}}{\partial r}\right) + g\rho\beta\left(\mathbf{T} - \mathbf{T}_c\right) = \mathbf{f}\left(\rho, \mathbf{u}, \frac{\partial \mathbf{u}}{\partial \mathbf{x}}\right)$$
(3.24).

Para flujo laminar asumimos un perfil de velocidad parabólico,

u = c₁
$$\overline{u}$$
 [1-(r²/R²)], del cual
 $\frac{\partial u}{\partial r} = -c'_1 \overline{u} r/R^2, y$
 $\frac{\partial^2 u}{\partial r^2} = -c'_1 \overline{u}/R^2$
remplazando estos términos en la ecuación (3.24) obtenemos
 $c'_1 \frac{\overline{u}}{R^2} + \frac{g \beta \Delta T}{\mu} = f(\rho, u)$ (3.26).
UNIVERSIDAD AUTONOMA DE NUEVO LEÓN
Introduciendo las propiedades del fluido apropiadas y el balance de energía

Introduciendo las propiedades del fluido apropiadas y el balance de energía asociado, y ordenando el resultado en forma funcional adimensional obtenemos:

$$\frac{hD}{k} = f\left[\left(\frac{\rho^2 g \beta \Delta T R^3}{\mu^2}\right), \left(\frac{c_p \mu}{k}\right), \left(\frac{D}{L}\right)\right]$$
(3.27)

0

$$Nu = f(Gr, Pr, D/L)$$
 (3.28)

donde

$$Gr = \frac{\rho^2 g \beta \Delta T R^3}{\mu^3}$$
(3.39),

el número de Grashof, representa la relación de la fuerza flotante a viscosa.

Debería ser observado en las ecuaciones (3.27) y (3.28) que cuando la flotación es la fuerza impulsora principal del flujo, el número de Reynolds es poco importante porque los parámetros del módulo de Grashof determinan enteramente la velocidad del fluido.

La mejor correlación de datos experimentales para transferencia de calor por convección libre-laminar en tubos verticales está dada por

$N_{u} = \frac{(Gr \cdot Pr)}{D} \left(\frac{D}{L}\right) \left[1 \cdot \exp\left[-16\left(\frac{L}{D \cdot Gr \cdot Pr}\right)^{3/4}\right]\right] \quad (3.30)$ UNIVERSIDA32 A LIONOMADOR VO LEON

donde las propiedades del fluido son evaluadas en T_w, la temperatura media de la pared, para gases $\beta = 1/T_f$ y para líquidos β se obtiene por medio de tablas con T_f, donde T_f es la temperatura media del grueso del fluido ya sea gaseoso o líquido y ΔT en el módulo de Grashof es tomado como (T_w - T_f).

Debido a que la ecuación (3.30) es tan formidable, está presentada gráficamente como Nu vs $(Gr \cdot Pr)(r/L)$ en la Fig. 3.8.

CAPÍTULO 4

CONVECCIÓN FORZADA

4.1 Coeficientes de Transferencia de Calor para Flujo de Fluidos en Tubos para Convección Forzada

UNIVE Considere el flujo fijo de un fluido en el tubo mostrado en la Fig. 4.1. Enfocando la atención sobre un elemento diferencial, la energía transportada por el fluido a la entrada en x es ON GENERAL DE BIBLIOTECAS

$$\dot{Q}|_{x} = \rho \overline{u} c_{p} \pi R^{2} T \qquad (4.1).$$

Y el fluido que sale en x + Δx saca energía que es

$$\dot{Q}\Big|_{x+\Delta x} = \left[\rho \overline{u} c_p T + \frac{d}{dx} \left(\rho \overline{u} c_p T\right) \Delta x\right] \pi R^2 \qquad (4.2).$$

El flujo de calor total hacia dentro del elemento a través de la pared del tubo está dado por:

$$\dot{Q}_{w} = 2\pi R \Delta xh_{x} \Delta T = 2\pi R \Delta xk \frac{\Delta T}{y}$$
 (4.3)

Un balance de energía lleva a la relación

$$h = \int_{T} \frac{R \rho \bar{u} c_{p}}{2 L \Delta T} dT$$
(4.4)

Un análisis de las cantidades involucradas en la ecuación (4.4) sugiere que con la introducción de las propiedades de viscosidad y conducción térmica del fluido, un nuevo arreglo en forma adimensional es factible, así:

$$\left(\frac{2\operatorname{Rh}}{k}\right) = \int_{\mathrm{T}} \left(\frac{2\operatorname{R}\rho\,\overline{\mathrm{u}}}{\mu}\right) \left(\frac{c_{\rho}\,\mu}{k}\right) \left(\frac{2\operatorname{R}}{L}\right) \frac{\mathrm{d}\mathrm{T}}{4\Delta\mathrm{T}} \tag{4.5}.$$

El análisis dimensional predice, por lo tanto, que una correlación de una forma funcional

$$\left(\frac{hD}{k}\right) = f\left[\left(\frac{D\rho\bar{u}}{\mu}\right), \left(\frac{c_{p}\mu}{k}\right), \left(\frac{D}{L}\right)\right]$$
(4.6)

puede ser usada para evaluar coeficientes de transferencia de calor por convección forzada. Más adecuadamente deberíamos escribir

Nu = f (Re, Pr,
$$\frac{D}{L}$$
) (4.7)
Nu = $\frac{hD}{k}$ (4.8)
el número de Nusselt, es la relación de transporte de calor convectivo a conductivo.
Puede también ser interpretado como una relación de gradientes de temperatura.
DRECCIÓN GEN Re = $\frac{D \rho}{\mu}$ DE BIBLIOTECAS (4.9)

el número Reynolds, es la relación de las fuerzas del fluido inercial a viscosa. Y,

$$\Pr = \frac{c_p \,\mu}{k} \tag{4.10}$$

el número de Prandtl, es la relación de momento a la difusión térmica.

Basado en el análisis dado arriba, un resumen de correlaciones para evaluar coeficientes de transferencia de calor para fluidos que fluyen en tuberías circulares se observa en la tabla 4.1

 Tabla 4.1
 Correlaciones para evaluar coeficientes de transferencia de calor para

 fluidos que fluyen en tuberías circulares.

4.2 Convección Libre y Forzada Combinadas

A causa de que muchas situaciones surgen en la práctica donde ambas fuerzas impuestas, de transporte de momento y de flotación, pueden ser del mismo orden de magnitud es pertinente revisar la región de transferencia de calor por convección mezclada. Ha sido reportado de estudios experimentales extensivos de transferencia de calor en tubos verticales que la región mezclada de transporte convectivo está definida aproximadamente por:

(convección forzada)
$$10^{-3} \le \frac{\text{Gr}}{(\text{Re})^{25}} \le 10^{-2}$$
 (convección libre) (4.11)

Una ecuación que predice coeficientes de transferencia de calor en esta región con exactitud aceptable de $\pm 20\%$ es:

Nu = 1.75
$$f_1 [Gz + 0.0722 f_2 (Gr \cdot Pr \cdot D/L)^{0.84}]^{1/3}$$
 (4.12)

donde:

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

el número de Nusselt [Ec. (4.8)] está basado en la diferencia de temperatura media entre ® pared y fluido; IÓN GENERAL DE BIBLIOTECAS

en el número de Graetz,

$$Gz = \frac{Wc_p}{kL}$$
(4.13)

todas las propiedades están evaluadas a la temperatura media del fluido, T_f,

en el número de Grashof,

Gr =
$$\frac{\rho^2 g D^3 \beta}{\mu^2}$$
 (T_s - T_{fc}) (4.14)

todas las propiedades están evaluadas a Ts;

en el número de Prandtl [Ec. (4.10)] todas las propiedades están evaluadas a T_f,

Figura 4.2 Gráfica de f1, f2 contra Nu / Gz

4.3 Coeficientes de Transferencia de Calor para Condensación de Vapor en Superficies Verticales

Un análisis de la transferencia de calor que ocurre cuando un vapor se condensa sobre una superficie fría implica un estudio de los mecanismos acoplados de flujo de fluidos, energía y transporte de masa.

Un análisis matemático de este fenómeno empieza con la consideración de una película delgada de condensado, formada en la parte superior que fluye hacia abajo de la superficie en forma laminar.

Figura 4.3 Gráfica para analizar el fenómeno de condensación sobre una superficie fría.

Para el flujo laminar el perfil de velocidad a través de la película asume una forma parabólica.

$$\mathbf{u} = -\frac{\rho g}{\mu} \left[\frac{1}{2} \left(\frac{\mathbf{r}}{\delta} \right)^2 - \frac{\mathbf{r}}{\delta} \right]$$
(4.15)

La razón de masa del flujo en cualquier punto x sobre la superficie es obtenida integrando esta expresión a través de la película, así obtenemos

 $\dot{W} = \int_{0}^{\delta} \rho \, \mathrm{udr} = \frac{g \, \rho^{2} \, \delta}{3 \, \mu} \qquad (4.16)$ donde \dot{W} varia con el espesor de película, δ , hacia abajo de la superficie. Enfocando la atención sobre un segmento de superficie Δx como se muestra en la Fig. 4.3, la cantidad de vapor saturado que se condensa puede ser expresada en términos de flujo de calor y de calor latente de vaporización como DIRECCIÓN GEN $\Delta W = \frac{\Delta \dot{Q}}{\lambda}$ (4.17)

Además, esta cantidad de calor es conducida a través de la película a la superficie bajo una fuerza impulsora, $\Delta T = T_v - T_s$, y

$$\Delta \dot{Q} = k \frac{\Delta T}{\delta} \Delta x \qquad (4.18).$$

Eliminamos $\Delta \dot{Q}$ de estas ecuaciones para obtener

$$\lim_{\Delta x \to 0} \frac{\Delta \dot{W}}{\Delta x} = \frac{dW}{dx} = \frac{k}{\lambda} \left(\frac{\Delta T}{\delta} \right)$$
(4.19)

Podemos eliminar d \dot{W}/dx diferenciando la ecuación (4.16) y sustituyendo el resultado en la ecuación (4.17) queda, después de integrar bajo la placa ($\delta = 0, x = 0$):

$$\delta = \left(\frac{4 \,\mu \,\mathrm{k} \,\Delta T \,\mathrm{X}}{\mathrm{g} \,\rho^2 \,\lambda}\right)^{0.25} \tag{4.20}$$

La ecuación (4.20) expresa el espesor de película, δ , como una función de la raíz cuarta de x, la distancia hacia abajo de la superficie para una película líquida con flujo laminar.

Escribiendo la ecuación (4.18) en términos de un coeficiente de transferencia de calor local y combinándola con la ecuación (4.20) obtenemos

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

$$D_{\lim_{\Delta x \to 0}} \frac{\Delta \dot{Q}}{\Delta x} = \frac{d\dot{Q}}{dx} = h_x \Delta T, NERAL DE_x = \left(\frac{g\rho^2 \lambda k_z^3}{4 \mu \Delta T X}\right)^{0.25} AS (4.21)$$

T

Cuando esta expresión es integrada sobre toda la superficie, la ecuación resultante define un coeficiente de transferencia de calor medio para la superficie condensante, así

$$h_{L} = \frac{1}{L} \int_{0}^{L} h_{x} dx = \frac{2\sqrt{2}}{3} \left(\frac{g\rho^{2} \lambda k^{3}}{\mu \Delta TL} \right)^{0.25}$$
(4.22)

o, en términos del número de Nusselt de película media esta expresión final llegará a ser

$$Nu_{L} = \frac{h_{L}L}{k} \approx 0.943 \left(\frac{g\rho^{2}\lambda L^{3}}{\mu k\Delta T}\right)^{0.25}$$
(4.23)

A causa de la formación de ondas de superficie y el hecho que para tubos largo una película excesiva se forma lo que causa una transición a flujo turbulento dentro del líquido, el análisis de datos experimentales conduce a las siguientes modificaciones de la ecuación (4.23) dando:

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

Para estas dos últimas ecuaciones las propiedades del fluido son evaluadas a la temperatura de película media $(T_s + T_v)/2$ y λ es determinada a la temperatura de saturación del vapor, T_v . El número de Reynolds de la película Re_L es calculado en la parte inferior de la sección calentada del tubo.

CAPÍTULO 5

DESCRIPCIÓN DEL EQUIPO

DE PRUEBA

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN 5.1 Descripción General

DIRECCION GENERAL DE BIBLIOTECAS

Este dispositivo único es uno de los sistemas profesionales desarrollados por Scott para la educación de la transferencia de calor. Con él se aprende mediante observación y experimentación personal los fundamentos de la transferencia de calor por convección natural (libre) y con ayuda mecánica (forzada).

La unidad está compuesta de dos sub-ensambles principales, junto con válvulas e instrumentación, montados verticalmente sobre un panel de resina fenólica, rellena de mica.

Figura 5.1a Diagrama del equipo para pruebas Scott de convección libre y forzada.

5.1.1 Primer Sub-ensamble

Ajuste de altura de entrada de líquido y sub-ensamble estabilizador de flujo a la izquierda del panel. La línea con válvula de aguja más a la izquierda es la línea de entrada de líquidos. La línea de en medio es la línea de drenaje de sobreflujo. Su parte superior es manualmente ajustable en 8 pulgadas de carrera vertical. Operada independientemente de la presión de la línea de entrada, su posición establece alturas reguladas por gravedad (sin bombeo) negativas, cero o positivas. Consecuentemente, puede usarse para determinar precisamente los valores de las alturas de expansión térmicas desarrolladas en el agua u otros refrigerantes de diferentes viscosidades. La línea de alimentación a la derecha, mide el líquido del lado del tubo del sub-ensamble del intercambiador de calor a una razón de flujo fija como sea establecida por el ajuste de altura. Para propósitos de observación, el receptor de líquido en la parte superior del sub-ensamble es de paredes de vidrio.

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN DIR⁵12 (Segundo Sub-ensamble) DE BIBLIOTECAS

Sub-ensamble del intercambiador de calor, de doble tubo, de un solo paso, vertical a la derecha del panel. Para propósitos de observación, la cubierta exterior del sub-ensamble es de vidrio. El vapor de agua (u otros vapores) entra a la cámara de vapor por un deflector atenuante adecuado y luego es pasado a través de un eliminador de rocío a la superficie del tubo de pared delgada orientado verticalmente. El condensado de una área superficial medida del lado de la cubierta del tubo es recogido y transportado al exterior de la cámara para drenarse o para medirse en el tanque de medición de plástico (entre los sub-ensambles). El embudo a la derecha del intercambiador recibe el flujo de

líquido del tubo y lo pasa al drenaje o a un depósito externo para su medición. La instrumentación incluye unos medidores de carátula de temperatura y presión (para usarse cuando se trabaje con vapores recalentados) a la entrada del vapor; unos termopares en los extremos superior e inferior de la sección medida del tubo, uno localizado en la corriente del líquido, el otro localizado en la cámara de vapor del lado de la cubierta en la superficie del tubo; un manómetro de extremo abierto y un dispositivo limitante de presión en el cabezal superior del lado de la cubierta.

5.1.3 Fluido Usado en la Unidad

La unidad usa agua (u otros líquidos refrigerantes) a la presión ordinaria de la tubería de la ciudad. El vapor de agua (u otros vapores) es obtenido de las líneas de servicio del laboratorio ya instaladas o puede obtenerse conectándose a un intercambiador de calor de fase (caldera) de la marca Scott modelo 9058 que amplía la capacidad experimental de la unidad.

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN © DIRECCIÓN GENERAL DE BIBLIOTECAS

Figura 5.1b Diagrama que ilustra los principales componentes del equipo de pruebas Scott para convección libre y forzada.

Figura 5.2 Diagrama de flujos.

5.2 Descripción Particular

El sistema de convección libre y forzada modelo 9054 ha sido diseñado por Scott para el estudio y aprendizaje, por experimentación en un ambiente del tipo de laboratorio, de los fundamentos básicos del proceso del transporte de calor convectivo. El equipo principal además de mostrarse en el diagrama de flujo anterior se describe en los puntos siguientes.

5.2.1 Tanque de Alimentación de Altura Constante

Está compuesto por un tubo de vidrio, de 6" de diámetro exterior por 5^{5/8} de altura, ceñido con unas placas de latón, una superior con ventilación y una inferior. La entrada de agua, el drenaje de sobreflujo del vertedero y la tubería de alimentación del agua están unidos directamente a la placa inferior. El tubo del drenaje de sobreflujo del vertedero es verticalmente ajustable sobre un rango de 3^{3/16} por medio de un ensamble de casquillo sellado localizado cerca de la parte media de la línea. Cuando la altura del vertedero es ajustada de modo que la aguja indica cero en la escala calibrada, esta representa el mínimo requisito de altura para iniciar el flujo por gravedad a través del aparato.

5.2.2 Cámara de Prueba

Una cámara de vapor tubular de vidrio de 5" de diámetro exterior por 36" de altura encierra un tubo condensador de cobre tipo L con diámetro nominal de 1/2" (5/8" de diámetro exterior por 1/25" de espesor). La porción de prueba de este tubo de cobre, exactamente 24" de largo, está envuelta por un cilindro metálico expandido de latón que ha sido instalado para eliminar la convección térmica no deseada, radialmente inducida entre el tubo y la cubierta de vidrio.

5.2.3 Recipiente de Condensados

Un recipiente cilíndrico de lucita (metil-metacrilato) de 6" de diámetro exterior por 9" de altura que descansa sobre un soporte de madera que se encuentra debajo y a la izquierda de la cámara de prueba. El condensado que se forma en el tubo condensador y que fluye hacia abajo se recoge en la parte inferior de la sección de prueba desde la cual desborda a una razón fija hacia el recipiente de condensados.

5.2.4 La Alimentación de Vapor

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

El vapor es alimentado a la cámara a una razón constante operando la válvula de entrada del vapor como se muestra en el diagrama de flujo. La fuente del vapor puede ser derivada de una línea de vapor de baja presión o de un dispositivo generador tal como el intercambiador de calor de fase antes mencionado. El vapor medido que entra desde la parte inferior es descargado en la cámara verticalmente hacia abajo a través de un recodo en forma de U invertida en la tubería de entrada y dentro de un relleno de rebabas de acero inoxidable. Este material empaquetado distribuye uniformemente el vapor que se eleva a través de la sección de prueba y sirve como un dehumificador eliminando el condensado del vapor que entra. Un termómetro de carátula bimetálico y un medidor de presión (más adelante de la válvula reguladora) están localizados en la línea de entrada del vapor. Una válvula de ventilación y un sello líquido están ubicados en la parte superior de la cámara del vapor. Esto permite un rango de presión de operación en la cámara desde la presión atmosférica (válvula abierta) hasta cerca de 10" de agua.

5.2.5 Termopares en la Sección de Prueba

1

Los termopares en la sección de prueba son del tipo cromel-alumel aislados con lana de vidrio. Dos termopares están localizados en la entrada y en la descarga del agua respectivamente y dos están soldados con plata a la superficie exterior superior e inferior del tubo de cobre como se muestra en el diagrama de flujo. Estos cuatro conductores terminan en un interruptor selector apropiado montado en el panel frontal del aparato. Así, todas las temperaturas pueden ser fácilmente monitoreadas desde un solo dispositivo de lectura de milivoltio (tal como un potenciómetro o un graficador) conectado a las terminales de salida de la caja del interruptor (selector de termopares).

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN 5.2.6 Tuberías, Válvulas y Drenajes DIRECCION GENERAL DE BIBLIOTECAS

Las tuberías, las válvulas y los drenajes son detallados en el esquema del diagrama de flujo. Las líneas de entrada del agua y del vapor contienen válvulas de medición para un control preciso de estos fluidos. Todas las líneas tienen conexiones al drenaje en sitios apropiados dispuestos para una operación conveniente. Además, la alimentación del agua y las líneas de descarga tienen un drenaje común para facilitar el reciclado en experimentos que utilizan fluidos diferentes al agua. Un arreglo similar también a sido provisto para el drenaje de condensados desde la parte inferior de la cámara.

5.3. Instrucciones de Operación General

5.3.1 Medidas de Seguridad

La seguridad es manejada en todos los sistemas de aprendizaje Scott, sin embargo, hay siempre precauciones normales o de "sentido común" que deben tomarse cuando se está operando cualquier equipo de laboratorio. Algunas de estas reglas de seguridad son:

Nunca trabaje solo en el laboratorio.

Conecte la entrada del vapor y agua del proceso al servicio de baja presión. El sistema Scott ha sido hidroestáticamente probado a 60 psig. y 300°F por esto las presiones de trabajo aceptables no deben exceder de 35 psig. ni en el vapor ni en el agua.

Antes de la operación familiarícese con el equipo, trace todas las líneas del proceso; pruebe todas las válvulas; fije las válvulas del drenaje totalmente abiertas y las válvulas de entrada del proceso cerradas. ONA DE NUEVO LEON

Cuando el primer vapor se admita al sistema abra la válvula de medición cuidadosamente y verifique todas las conexiones por posibles fugas.

Asegúrese que la cámara de vapor esté ventilada (válvula de ventilación abierta) y verifique que el sello líquido sea seguro y no esté tapado antes de cerrar la ventilación después que el vapor esté circulando.

Esté consciente de que las líneas de vapor no están revestidas de aislante y ellas se calientan rápidamente. Cuando ajuste el flujo de vapor es siempre buena practica colocar un paño sobre la válvula antes de tocarla.

Si una válvula se atora y no puede operarse manualmente, no intente girarla con una llave. Cierre la línea del vapor, permita que el sistema se drene y se enfríe, luego afloje el gorro del empaque ligeramente y trate de nuevo.

Si está usando fluidos en el proceso diferentes del agua asegúrese que el área del laboratorio esté bien ventilada y todas las salidas eléctricas protegidas y el equipo adecuadamente aterrizado.

Finalmente mantenga el espacio de trabajo de laboratorio limpio y sin desorden. Esté consciente de los riesgos por charcos y escombros sobre el piso que podrían causar resbalones o caídas.

5.3.2 Conexiones del Proceso

Conecte la línea de entrada del vapor al aparato mediante una "T" como se muestra en la figura 5.3. Es preferible, donde sea posible, usar una trampa de condensados estándar, figura 5.4. Un arreglo adecuado, aunque menos conveniente se muestra en la figura 5.5. Aquí el condensado se recoge en la línea de drenaje bajo la "T" y puede ser periódicamente eliminada del sistema a través de una válvula de descarga.

Figura 5.3 Diagrama donde se muestra la Te conectora con la línea de vapor.

Si la línea de la fuente de vapor es directamente conectada al sistema a través del acoplamiento provisto, el condensado que se forma en la línea causará ondas de presión y alguna perturbación dentro de la cámara de prueba, una situación indeseable.

La conexión del agua debe de hacerse directamente a la línea de entrada acoplándose con una manguera flexible para agua o, alternativamente, con tubo estándar de acero o galvanizado de 150 lbs. y fijado para instalación permanente.

Conecte las líneas de descarga del sobreflujo de agua y del condensado de vapor a drenajes de piso adecuados en el laboratorio. Conexiones de manguera flexible son adecuadas para este servicio.

Figura 5.6 Diagrama de flujo del equipo Scott para convección libre y forzada.

5.3.3 Flujo de Agua

Cierre las válvulas de medición del agua W-1 y la válvula de desviación de descarga W-4. Abra plenamente la válvula de sobreflujo del vertedero W-2 y la válvula de descarga del agua W-3. Cierre las válvulas S-1 y S-2. Todas estas válvulas son mostradas en la figura 5.6. Ajuste la altura de la taza de sobreflujo del vertedero en el tanque de alimentación de altura constante moviendo el indicador al ajuste apropiado sobre la escala calibrada. Abra W-1 y permita que el tanque se llene rápidamente. Regule la válvula medidora cuando el nivel del agua ascendente se acerque al punto de sobreflujo permitiendo justo la suficiente entrada de agua para mantener una altura

5.3.4 Flujo de Vapor

constante.

Llene el sello de la cámara de vapor con agua a través del tubo del manómetro alimentando el agua hasta que pueda observarse visualmente el derrame dentro de la cámara. La válvula de medición del vapor V-1 se encuentra cerrada. Abra la válvula de ventilación S-4. Fije la válvula de tres vías S-3 en la posición abierta A-C (B desconectada) para drenar el condensado de la cámara de vapor cuando éste se forme durante el período de calentamiento. Cierre la válvula de drenaje V-2.

Inicie el flujo de vapor desde la fuente y cuando el manómetro en la línea de entrada empieza a indicar una presión en la línea de alimentación abra V-1 lentamente para admitir vapor a la cámara. Ajuste V-1 y la válvula de la fuente de modo que la lectura en el manómetro no exceda de 20 a 30 psig. Con S-4 y S-3 abiertas, la cámara debe permanecer a la presión atmosférica.

Durante este período de calentamiento, el condensado que se forma sobre la pared de vidrio de la cámara de vapor pondrá la cámara de prueba casi invisible. Después de 10 a 15 minutos de calentamiento, sin embargo, cuando el sistema está operando cerca de las condiciones de estado fijo, las paredes de vidrio empezarán a aclarar y la cámara de prueba llegará a ser visible otra vez. Durante este período si el vapor aparece en la línea de descarga S-3 ajuste esta válvula a la posición abierta B-C (A desconectada). Abra la válvula V-2 momentáneamente y drene cualquier condensado que se haya acumulado ahí.

5.3.5 Ajuste de la Presión de la Cámara de Vapor

Cierre la válvula de ventilación S-4. La posición A en S-3 debe de estar desconectada. Incremente la entrada del vapor al sistema abriendo V-1 lentamente. Observe que el nivel de líquido se eleva en el tubo del manómetro extendiéndose desde el recipiente del sello. Ajuste V-1 hasta que el nivel de líquido deseado se obtenga. Si el nivel de líquido oscila por más de $\pm 1/2$ ", debe drenarse el condensado acumulado por V-2 y la válvula de descarga de condensados (ver Fig. 5.3). Monitoree las temperaturas del lado del vapor hasta que no cambien con el tiempo. El sistema debe ahora estar operando en condiciones de estado fijo.

DIRECCIÓN GENERAL DE BIBLIOTECAS

5.3.6 Recolección de Condensados

Después de conseguir la operación de estado fijo, cuidadosamente abra la válvula S-2 y permita que la línea receptora de condensados se llene hasta que el agua empiece a fluir en el tanque de plástico. Cierre S-2. Cuando el condensado que se forma sobre el tubo condensador se recoge en la parte inferior de la sección de prueba, fluirá dentro de la línea llena receptora forzando al agua a derramarse en el receptor. En el estado fijo habrá un flujo cercanamente constante de condensado dentro del contenedor.

5.3.7 Procedimiento de Apagado

Primero abra cuidadosamente la ventilación S-4 que se encuentra sobre la cámara de vapor. Luego cierre la válvula de la fuente de vapor y permita que la presión en la línea de alimentación se reduzca a cero en el manómetro. Abra las válvulas de la línea de drenaje S-3 (A-B-C abiertas) y V-2. Cierre las válvulas de entrada del agua desde la fuente y la válvula de medición W-1. Abra las válvulas S-1 y S-2 para drenar el agua del sistema. A continuación abra W-4 para drenar la línea de derivación y W-3 está normalmente abierta durante la operación. Abra V-1 y la válvula de descarga de condensado (ver Fig. 5.5). Finalmente, el sistema deberá estar ahora completamente abierto y plenamente drenado.

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN © DIRECCIÓN GENERAL DE BIBLIOTECAS

CAPÍTULO 6

OBTENCIÓN DE DATOS PARA CONVECCIÓN LIBRE

INIV 6.1 Procedimiento para la Obtención de Datos para Convección Libre DIRECCIÓN GENERAL DE BIBLIOTECAS

Ajustar el sistema para operación de estado fijo, con un ajuste de vertedero de 3 cm. Y una presión de cámara de 5 cm. H₂O y una vez conseguida la operación de estado fijo se deben registrar los siguientes datos:

- Tipo de flujo.
- Ajuste del vertedero.
- Presión de cámara.

- Presión del vapor.
- Temperatura del vapor
- Temperatura del agua de entrada (T₁).
- Temperatura del agua de salida (T₃).
- Temperatura de la superficie exterior inferior del tubo de prueba (T₂).
- Temperatura de la superficie exterior superior del tubo de prueba (T₄).
- Razón del flujo en peso del condensado de vapor
- Razón del flujo en peso del agua de enfriamiento
- Los datos complementarios son:
 - Presión barométrica (Patm).
- Temperatura ambiental (Tatm).

Se repite la prueba para ajuste del vertedero de 1 cm., Registrando los mismos datos como antes. Así también se registrarán, bajo condiciones de estado fijo, lecturas para ajustes de vertedero de 0 cm, que corresponden a la condición de convección "libre" o "natural" (punto de iniciación del flujo para el sistema frío).

Por último se ajusta el vertedero de tal manera que se interrumpa el flujo de agua para la circulación natural de la prueba anterior (altura negativa del vertedero). Cuando el agua en la sección de prueba es nuevamente calentada, gradientes de densidad mayores se generarán lo cual iniciará otra vez el flujo y una vez que se consiga la operación de estado fijo se deben registrar los mismos datos como en las pruebas anteriores Se establece una tabulación apropiada para el uso más eficiente de los datos que posteriormente se utilizarán en los cálculos. Ver tabla 6.1.

Unidades	Concepto	Rango Convección Libre			
		Vert 3 Re 7,188.88	Vert 1 Re 2,192.4	Vert 0 Re 1,554.9	Vert -1.8 Re 754.5
cm de agua	Presión cámara de vapor	5	5	5	5
Kg/cm ²	Presión del vapor	1	0.98	1	1
°C	Temperatura del vapor	95.6	98.9	97.8	97.2
°C	T	32.0	35.9	39.1	56.1
°C	T ₂	92.6	95.5	97.2	96.8
IVER	SIDAD AUT	Ó]36.7)	[A 52.]E]	62.6 V) L85.5 Ó
°C DIR I	TCCIÓNGEN	68.7 IF R A I I	89.9	93.9	A 96.8
Kg/seg	Ŵ _{agua}	38.22 x 10 ⁻³	10.1067 x 10 ⁻³	6.7453 x 10 ⁻³	2.83 x 10 ⁻³
Kg/seg	Ŵ condensado	0.3365 x 10 ⁻³	0.3246 x 10 ⁻³	0.2953 x 10 ⁻³	0.1668 x 10
mm de Hg	Presión barométrica	719,5	719.5	719.5	719.5
°C	Temperatura ambiental	31.5	31.5	31,5	32

Tabla 6.1 Datos obtenidos en el sistema de pruebas de convección libre
CAPÍTULO 7

OBTENCIÓN DE DATOS PARA CONVECCIÓN FORZADA T TANI

UNIVE7.1 SProcedimiento para la Obtención de Datos para Convección Forzada DIRECCION GENERAL DE BIBLIOTECAS

El tanque de alimentación de agua debe llenarse completamente, la válvula W-2 del sobre flujo del vertedero deberá cerrarse y la razón del flujo de agua será controlada por la válvula controladora del agua, W-1, la presión de la cámara del vapor será 5 cm. H_2O , las mediciones deberán realízarse para estado fijo a diferentes ajuste de W-1 que correspondan a números de Reynolds en los rangos: de 100 – 1000; de 2000 – 6000; de 6000 – 10000; y mayores de 10000

Los datos a registrarse son los mismos que para las pruebas anteriores.

- Tipo de flujo.
- Ajuste del vertedero.
- Presión de cámara.
- Presión del vapor.
- Temperatura del vapor

JNIVERSIDAD AUTONOMA DE NUEVO LEON Los datos complementarios son: DIRECCION GENERAL DE BIBLIOTECAS

- Presión barométrica (Patm).
- Temperatura ambiental (T_{atm}).

			Rango Conve	cción Forzada	i
Unidades	Concepto	100 - 1 000	2 000 - 6 000	6 000 - 10 000	> 10 000
TON	OM	Re 882.4	Re 5 926.9	Re 9 222.35	Re 17 062.9
Cm de agua	Presión cámara de vapor	5	5	5	5
Kg/cm ²	Presión del vapor	1	l	0.97	0.97
°C	Temperatura del vapor	94.4	94.4	94.4	94.4
°C	TO	31.5	31.5	30.6	30.6
°C	T ₂	65.2	67	70.9	73.1
°C	T ₃	44.4	33.1	31.5	31.1
IV•€R:	SIDAD AUT	ÓN58ON	[A 48.2E]	1150.4 V(49.2
Kg/seg	Wagua GEN	5.355 x 10 ⁻³	39 .05 x 10 ⁻³	59,86 x 10 ⁻³	110.38 x 10 ⁻³
Kg/seg	Ŵ condensado	0.126 x 10 ⁻³	0.1103 x 10 ⁻³	0.1073 x 10 ⁻³	0.1183 x 10 ⁻³
mm đe Hg	Presión barométrica	718	718	718	718
°C	Temperatura ambiental	32.0	32.5	33.5	33

 Tabla 7.1
 Datos obtenidos en el sistema de pruebas de convección forzada

CAPÍTULO 8

CÁLCULO DE COEFICIENTES DE

TRANSFERENCIA DE CALOR

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN 8.1 Bases DIRECCIÓN GENERAL DE BIBLIOTECAS

ł

Con los datos obtenidos de las pruebas realizadas en el laboratorio, tanto para convección libre como para convección forzada, concentrados en las tablas 6.1 y 7.1, se realizarán los cálculos para obtener los coeficientes de transferencia de calor medios experimentales (h_{cexp}) para cada una de las pruebas, también se calcularán los valores del número de Nusselt experimental (N_{uexp}), que es el parámetro adimensional relacionado con los coeficientes de transferencia de calor.

Todos los cálculos se harán en el sistema internacional de unidades.

A continuación se detallan las ecuaciones que se utlizarán.

8.1.1 Cálculo del Calor Recibido por el Agua.

La determinación del calor recibido por el agua (fluido de enfriamiento) se obtiene mediante la ecuación:

$$Qc = \dot{m}_{c}Cp(T_{3} - T_{1})$$
(8.1)

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

que se obtiene de la tabla A-3 del apéndice con la temperatura promedio del fluido frío (T_{fc} en [°]K)

donde:

$$T_{fc} = (T_1 + T_3)/2 \tag{8.2}$$

 T_1 = es la temperatura del agua de entrada al tubo de prueba (en °K)

y T_3 = es la temperatura del agua a la salida del tubo de prueba (en °K)

8.1.2 Cálculo del Calor Cedido por el Vapor

La determinación del calor cedido por el vapor al sistema de prueba se obtiene

mediante la ecuación:

$$\dot{Q}_{h} = \dot{m}_{cond} \left[\lambda + C_{p} \left(Tv - Ts \right) \right]$$
(8.3)

 \hat{Q}_{b} =es el calor cedido por el vapor (en w)

 \dot{m}_{cond} = es la razón en masa del condensado (en kg/s)

 λ = es el calor latente de condensación del vapor (en J/kg) que se obtiene de la tabla A-6 del apéndice con la temperatura de saturación del vapor (Tv en °K)

 C_p = es el calor específico medio del condensado (en J/Kg-°K) y se obtiene de la tabla A-3 del apéndice con la temperatura promedio de la película del fluído caliente (T_{ph en} °K) donde: DIRECCIÓN GENERA Tv+Ts Tp_h = $\frac{Tv+Ts}{2}$ (8.4)

donde:

donde:

Tv = es la temperatura de saturación del vapor (en °K)

y Ts = es la temperatura promedio de la superficie (en °K) que se obtiene por:

$$T_{s} = \frac{T_{2} + T_{4}}{2}$$
(8.5)

donde:

T₂= es la temperatura de superficie en la parte inferior del tubo (en °K)

y T₄= es la temperatura de superficie en la parte superior del tubo (en °K)

DIRECCIÓN GENERAL DE BIBLIOTECAS

Re= es el número de Reynolds (adimensional)

 ρ = es la densidad del fluido (en Kg/m³)

V= es al velocidad del fluido (en m/s)

D_i= es el diámetro interior del tubo (en m)

µ= viscosidad dinámica del fluido (en Kg/m-s)

Nota: $\rho y \mu$ se obtienen de la tabla A-3 del apéndice para la temperatura promedio

de la película del fluido frío (Tpc en °K) donde:

$$Tp_{c} = \frac{Ts + Tf_{c}}{2}$$
(8.7)

aplicando la ecuación de continuidad

$$\dot{\mathbf{m}}_{c} = \mathbf{A}_{i} \mathbf{v} \boldsymbol{\rho} \tag{8.8}$$

8.1.4 Cálculo del Coeficiente de Transferencia de Calor

Para determinar el coeficiente de transferencia de calor por convección se aplica la ecuación de la ley de enfriamiento de Newton:

$$\dot{\mathbf{Q}}_{c} = \mathbf{h}_{c} \mathbf{A} \left(\mathbf{T}_{s} - \mathbf{T}_{fc} \right) \tag{8.11}$$

donde:

 \dot{Q}_c = es el calor transferido de la superficie del tubo al fluido (en w) y que por balance de energías se calcula a partir de los datos medidos para el agua según la ecuación (8.1)

UNIVED;= es el diámetro interior del tubo MA DE NUEVO LEÓN DIL= es la longitud del tubo de prueba DE BIBLIOTECAS

 T_s = es la temperatura promedio de la superficie (en °K) y se determina por la ecuación (8.5)

Nota: Cabe señalar que estos datos se midieron por la parte externa del tubo de prueba pero se considerará igual para la parte interna del tubo ya que éste es de pared delgada y de material cobre que es buen conductor de calor.

T_{fc}= es la temperatura promedio del agua (en °K)

Despejando he de la ecuación (8.11) queda:

$$h_{c} = \frac{\dot{Q}_{c}}{A(T_{s} - T_{fc})}$$
 (8.13)

Este valor por ser calculado con los datos experimentales será identificado como h_{cexp}

Nuexp= es el numero de Nusselt experimental (adimensional)

D₁= diámetro interior del tubo (en m)

K= conductividad térmica del fluido (en w/m-°K) se determina de la tabla A-3 del apéndice para la temperatura promedio de la película del fluido frio Tp_c según la ecuación (8.7).

8.2 Cálculos Numéricos

punto.

Ejemplo:

En este punto se anotará la secuencia del manejo de ecuaciones y las operaciones a realizar para calcular el coeficiente de transferencia de calor experimental (hc_{exp})y el número de Nusselt experimental (Nu_{exp}).

Se tomará como ejemplo-la serie de lecturas registrada para la primer prueba con una altura de vertedero de 3 cm. (ver tabla 6.1)

Como el procedimiento de cálculo para el resto de las pruebas es similar, no se registra aquí, solo se concentran los resultados obtenidos en la tabla 8.1 al finalizar este

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

DIRECCIÓN GENERAL DE BIBLIOTECAS Diámetro interior de tubo = D₁= 1.3843X10⁻² m

Diámetro exterior de tubo = $D_e = 1.5875 \times 10^{-2} \text{ m}$

Longitud de tubo = L = 0.6096 m

Área de sección transversal interior = A_i = 1.505X10⁻⁴ m²

Área de transferencia de calor = $A = 2.651 \times 10^{-2} \text{ m}^2$

Lecturas para altura de vertedero 3cm (Ver tabla 6.1)

Temperatura del agua de entrada = T_1 = 32°C = 305°K

Temperatura del agua a la salida = T_3 = 36.7°C = 309.7°K

Temperatura superficie exterior inferior del tubo= T_2 = 92.6°C =365.6°K

Temperatura superficie exterior superior del tubo = T_4 =68.7°C=341.7°K

Temperatura del vapor = $Tv=95.6^{\circ}C = 368.6^{\circ}K$

Razón flujo masa de agua = \dot{m}_{c} = 38.22X10⁻³ Kg/s

Razón flujo masa de condensado = $\dot{m}_{cond} = 0.3365 \times 10^{-3} \text{ Kg/s}$

Datos complementarios:

Presión de cámara de vapor=5 cm de H₂O man.

Presión de vapor=1 Kg/cm² man.

Presión barómetrica=719.5 mm de Hg.

UNIVERSIDAD AUTONOMA DE NUEVO LEON Temperatura ambiente=31.5 °C DIRECCIÓN GENERAL DE BIBLIOTECAS

Procedimiento de cálculos

a) Determinación del calor recibido por el agua por ecuación 8.1

$$Qc = \dot{m}_{c}Cp(T_{3} - T_{1})$$

de ecuación (8-2)

$$T_{f_c} = \frac{T_1 + T_3}{2} = \frac{305 + 309.7}{2} = 307.35 \text{ k}$$

consultando tabla A-3 del apéndice para el agua con T_{fc} = 307.35°K encontramos C_p = 4175.06 joule/Kg-°K

Así:
$$\dot{Q}_c = 38.22 \times 10^{-3} \times 4175.06(309.7-305)$$

V con T_v=368.6 °K en tabla A-6 del apéndice consultamos λ =2.2658X10⁶ joule/Kg

DIRECCIÓN GENERAL DE BIBLIOTECAS

$$Ts = \frac{T_2 + T_4}{2} = \frac{365.6 + 341.7}{2} = 353.65 \text{ }^{\circ}K$$

de ecuación (8.4)

$$T_{ph} = \frac{Tv + Ts}{2} = \frac{368.6 + 353.65}{2} = 361.125$$
 °K

y consultando tabla A-3 del apéndice con

$$T_{ph}$$
= 361.125 °K encontramos C_p = 4201 J/Kg-°K

$$C_{p} = 4,201 \frac{J}{Kg} - Kg - Kg$$

Sustituyendo datos en ecuación (8.3)

de ecuación (8.7) obtenemos la temperatura promedio de la película del fluido frío DIRECCIÓN GENERAL DE BIBLIOTECAS

$$T_{pc} = \frac{Ts + Tf_c}{2} = \frac{353.65 + 307.35}{2} = 330.5$$
 K

Y en la tabla A-3 del apéndice para el agua con T_{pc} = 330.5 °K obtenemos

$$\mu$$
= 4.89X10⁻⁴ Kg/m-s

y sustituyendo datos en ecuación 8-10

$$Re = \frac{4 \times 38.22 \times 10^{-3}}{\pi \times 1.3843 \times 10^{-2} \times 4.89 \times 10^{-4}}$$
$$Re = 7,188.88$$

d) Cálculo del coeficiente de transferencia de calor.

Comparando los valores del calor recibido por el agua y el calor cedido por el vapor observamos que hay una diferencia la cual se atribuye a pérdida por radiación desde el tubo por lo que el cálculo del coeficiente de transferencia de calor del lado del agua solo tomará en cuenta el calor recibido por el agua asi por ecuación (8.13) $hc_{exp} = \frac{Q_c}{A(T_s - T_{r_c})} = \frac{749.98}{2.65 \times 10^{-2} (353.65 - 307.35)} =$

UNIVERSIDAD AUTÓNA DE NUEVO LEÓN h_{cexp}= 611 W/m²-^oK DIRECCIÓN GENERAL DE BIBLIOTECAS e) Cálculo del número de Nusselt experimental con ecuación (8.14)

$$Nu_{exp} = \frac{h_{cexp}D_{i}}{K}$$

con Tpc= 330.5 °K en tabla A-3 del apéndice para el agua encontramos

K= 0.6525 W/m-°K

Y sustituyendo datos en ecuación (8.14)

$$\mathrm{Nu}_{\mathrm{exp}} = \frac{611 \times 1.3843 \times 10^{-2}}{0.6525} = 12.96$$

		Rango Conv	ección Libre	
Concepto	Vert. 3 cm	Vert 1 cm	Vert. 0 cm	Vert1.8 cm
Q _c (w)	749.98	683.4	661.88	348.3
Q _b (w)	783.57	742.16	671.2	378.1
Re	7188.88	2192.4	1554.9	754.5
hc _{exp} (W/m ² °c)	DAUTÓ	529.32	E 558.53 E	505.3
Nu _{exp}	12.96	11.07	11.61	10.38
DIRECCIÓ	ON GENER	Rango Conve	cción Forzada E	CAS
Сопсерно	Re 100-1 000	Re 2 000-6 000	Re 6 000-10 000	Re > 10 000
	288.33	260.9	224.99	230.5
Q _h (w)	303.5	267.5	258.85	285.14
Re	882.4	5926.7	9222.35	17062.9
hc _{exp} (W/m ² - °K)	459.865	390.37	286.71	286.94
Nuevo	9.88	8.47	6.21	6.21

CAPÍTULO 9

En el desarrollo del presente capítulo se derivarán ecuaciones matemáticas, una para los datos experimentales registrados en convección libre y otra para los datos en convección forzada. Para esto, se establecerá en una gráfica comparativa, la relación de los datos experimentales con los obtenidos por la ecuación de Brown & Gauvin, que se usa ampliamente para condiciones de flujo convectivo mezclado (o combinado) de aire en tubos verticales. Para obtener esta gráfica se evalúa la relación del número de Nusselt por la ecuación de Brown y Gauvin (N_{UB&G}) dividido por el número de Graetz a la 1/3 (N_{UB&G}/Gz^{1/3}) dicha relación será la ordenada de la gráfica, y también se evaluará la relación del número de Nusselt experimental (N_{Uexp}) con el número de Graetz (Gz) a la 1/3 (N_{uexp}/Gz^{1/3}) dicha relación será la abscisa de la gráfica.

Los cálculos de las relaciones se harán para cada una de las pruebas constituyendo cada pareja de valores un punto de la gráfica y de la posición de todos los puntos se define una línea cuya ecuación constituye la ecuación matemática buscada.

9.2 Derivación de Ecuación para Datos Registrados en Convección Libre.

A continuación se muestran las ecuaciones y el procedimiento del cálculo para uno de los puntos de la gráfica y en seguida en una tabla se encuentran los resultados para el resto de los puntos los cuales al graficarse nos darán la ecuación buscada.

9.2.1 Cálculo del Número de Nusselt por la Ecuación de Brown y Gauvin.

El número de Nusselt de Brown y Gauvin se obtiene por la relación: DIRECCIÓN GENERAL DE BIBLIOTECAS $Nu_{B\&G} = 1.75 \left(\frac{\mu_f}{\mu_s}\right)^{0.14} \left[Gz + 0.012 \left(GzGr^{1/3}\right)^{4/3}\right]^{/3}$ (9.1)

donde:

 μ_f = viscosidad dinámica (en Kg/m-s) definido para la temperatura promedio del fluido Tf_c

 μ_s =viscosidad dinámica (en Kg/m-s) definida para la temperatura promedio de la superficie Ts

Gz= número de Graetz (adimensional) evaluado a la temperatura promedio de la película Tp_c

$$Gz = \left(\operatorname{Re} \operatorname{Pr} \frac{\mathrm{D}}{\mathrm{L}} \right) \tag{9.2}$$

Gr=número de Grashof (adimensional) dende todas las propiedades se evalúan ala temperatura promedio de la película Tp_c , excepto β , que se evalua a la temperatura promedio del fluido Tf_c DE BIBLIOTECAS

$$Gr = \frac{g\rho^2\beta D^3(Ts - Tf)}{\mu^2}$$
(9.3)

donde:

 ρ = densidad (en Kg/m³)

β= coeficiente de dilatación volumétrica (adimensional)

D= diámetro interior del tubo (en m) = 1.3843×10^{-2} m

T_s= Temperatura promedio de superficie °K

T_f= Temperatura promedio del fluido °K

UNIVE Sustitución de valores y operaciones para el punto con altura de vertedero de 3 cm. DIRECCIÓN GENERAL DE BIBLIOTECAS

Cálculo de la temperatura promedio del fluido.

Tf
$$_{c} = \frac{T_{1} + T_{3}}{2} = \frac{305 + 309.7}{2} = 307.35$$
 K

Con $T_{fc} = 307.35$ °K en la tabla A-3 del apéndice.

$$\mu_{\rm f} = 7.41 {\rm X} 10^{-4} \, \frac{{\rm Kg}}{{\rm m} - {\rm s}}$$

Cálculo de la temperatura promedio de superficie

$$Ts = \frac{T_2 + T_4}{2} = \frac{365.6 + 341.7}{2} = 353.65^{\circ}k$$

Con Ts = 353.65 °K en la tabla A-3 del apéndice

UNIVE Con Tpc =330.5 °K en la tabla A-3 del apéndice E NUEVO LEÓN DIRECCIÓN GENERAL DE BIBLIOTECAS

 $\rho = 984.75 \text{ Kg/m}^3$

 μ = 4.8910⁻⁴ Kg/m-s

Pr= 3.175

y con T_{fc} = 307.35 °K en tabla A-5 del apéndice

 $\beta = 339.2 \text{ X}10^{-6}$

Cálculo del número de Reynolds

Sustituyendo valores en la ecuación:

$$Re = \frac{\rho VD^2}{\mu} = \frac{4 \dot{m}_e}{\pi D\mu}$$

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN Sustituyendo valores en ecuación (9.2) DIRECCIÓN GENERAL DE BIBLIOTECAS

$$Gz = RePr\frac{D}{L}$$

$$Gz = 7188.88 \times 3.175 \frac{1.3843 \times 10^{-2}}{0.6096}$$

Gz = 518.31

Cálculo del número de Grashof

Sustituyendo valores en ecuación 9.4

Gr =
$$2.602 \times 10^{-5} \frac{\rho^2 \beta (Ts - Tf_c)}{\mu^2}$$

UNIVERSIDADAUTÓNOMA DE NUEVO LEÓN Sustituyendo valores en ecuación 9.1 DIRECCIÓN GENERAL DE BIBLIOTECAS $Nu_{B\&G} = 1.75 \left(\frac{\mu_{f}}{\mu_{s}}\right)^{0.14} \left\{Gz + 0.012 \left[Gz(Gr)^{1/3}\right]^{4/3}\right\}^{1/3}$

$$Nu_{B\&G} = 1.75 \left(\frac{7.41 \times 10^{-4}}{3.61 \times 10^{-4}} \right)^{0.14} \left\{ 518.31 + 0.012 \left[518.31 (1657213.2)^{1/3} \right]^{4/3} \right\}^{1/3}$$

 $Nu_{B\&G} = 59.83$

9.2.2 Cálculo de la Relación del Número de Nusselt por Ecuación Brown y Gauvin Entre el Número de Graetz a la 1/3

$$\frac{\mathrm{Nu}_{B\&G}}{\mathrm{Gz}^{1/3}} = \frac{59.83}{(518.31)^{1/3}} = 7.45$$
9.2.3 Cálculo de la Relación del Número de Nusselt Experimental
Entre el Número de Graetz a la 1/3
De tabla 8.1 para altura de vertedero de 3 cm. Nu_{exp}= 12.96
I
UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN
DIRECCIÓN (Nu exp
Gz^{1/3} = A12.96
BIBLIOTECAS
Gz^{1/3} = 1.61

El mismo proceso de cálculo se sigue para el resto de pruebas y el concentrado de resultados se da en la tabla 9.1

	Concepto	Vert= 3 cm.	Vert= 1 cm.	Vert= 0 cm.	Vert= -1.8 cm.
	T _{fc} (°k)	307.35	317	323.85	343.8
	β (adimensional)	339.2x10 ⁻⁶	414.26x10 ⁻⁶	462.61x10 ⁻⁶	588.2x10 ⁻⁶
	μ _f (Kg/m-s)	7.41x10 ⁻⁴	6.173x10 ⁻⁴	5.486x10 ⁻⁴	4.11x10 ⁻⁴
TONT	Ts (°k)	353.65	365.7	368.55	369.8
	μ _s (Kg/m-s)	3.61x10 ⁻⁴	3.096x10 ⁻⁴	3x10 ⁻⁴	2.95x10 ⁻⁴
E.	Tpe (%)	330.5	341.35	346.2	356.8
X	ρ (Kg/m³)	984.75	979.1	975.7	-969
JN	VEµ(Kg/m-s)	4.89x10 ⁻⁴	4.24x10 ⁻⁴	3.99x10 ⁻⁴	3.45x10 ⁴
	Pr (adimensional)	3,175	2.66	2.514	2.128
	Re (adimensional)	7188.88	2192.4	1554.9	CAS 754.5
	Gz (adimensional)	518.31	132.43	88.77	36.46
	Gr (adimensional)	1657213.2	2799185.3	3217485.9	3139171.4
	Nu _{B&G} (adimensional)	59.83	35.17	29.7	19.24
	$\frac{Nu_{B\&G}}{Gz^{1/3}}$ (adimensional)	7.45	6.9	6.66	5.8
	Nu _{exp} (adimensional)	12.96	11.07	11.61	10.38
	$\frac{\text{Nu}_{exp}}{\text{Gz}^{1/3}}$ (adimensional)	1.61	2.17	2.6	3.13

Tabla 9.1	Concentrado de Resultados de Parámetros Comparativos para Pruebas c	de
	Convección Libre	

9.2.4 Comparación de Datos Experimentales con la Ecuación de Brown y Gauvin.

En los datos tabulados de la tabla 9.1 se tiene la información para trazar la siguiente gráfica comparativa:

Figura 9.1 Gráfica de Comparación de Datos Experimentales con la Ecuación de Brown y Gauvin (Convección Libre).

9.2.5 Derivación de Ecuación Matemática para Convección Libre.

La posición de los puntos en la gráfica 9.1 sugiere que una modificación de la ecuación de Brown y Gauvin estimaría coeficientes de transferencia de calor para flujo de agua en tubos verticales. La ecuación de la línea media que pasa a través de los puntos es la ecuación de una línea recta en esta gráfica.

DIRECCIÓN GENER Nu _{B&G} =1.75 $\left(\frac{\mu_{f}}{\mu_{s}}\right)^{0.14}$ [Gz+0.012 (GzGr^{-1/3})^{4/3}]^{1/3}

y de ecuación 9.2

$$Gz=RePr - L$$

En estas expresiones

 μ_f se evalúa a Tf_c

µs se evalúa a Ts

 β se evalúa a T_{fc}

y el resto de propiedades se evalúa a Tp_c como se señalo en el procedimiento de cálculo.

La ecuación 9.5 es la ecuación propuesta para evaluar coeficientes de transferencia de calor para agua en tubos verticales para número de Reynold de 500-8000 y Grashot de 1,500,000-4,000,000

UNIVERSIDAD AUTONOMA DE NUEVO LEON DIRECCIÓN GENERAL DE BIBLIOTECAS

9.3 Derivación de Ecuación para Datos Registrados en Convección Forzada.

Las ecuaciones y los procedimientos de cálculo son similares a los de convección libre y se dan en el punto 9.2 por lo que acontinuación se da el concentrado de resultados para los datos registrados como convección forzada.

Tabla 9.2	Concentrado de Resultados de Parámetros Comparativos para Pruebas de
	Convección Forzada.

	Concepto	Re de 100-1 000	Re de 2 000-6 000	Re de 6 000-10 009	Re > 10 000
	T _{fc} (°k)	310.95	305.39	304.05	303.85
	β (adimensional)	369X10 ⁻⁶	322.35 x 10 ⁻⁶	310.85 x 10 ⁻⁶	309.1X10 ⁻⁶
	VERITATIS μ _f (Kg/m-s)	6.845X10 ⁻⁴	7.743 x 10 ⁻⁴	7.97 x 10 ⁻⁴	8 x 10 ⁻⁴
1	Ts (°k)	334.6	330.6	333.65	334.15
	μ _s (Kg/m-s)	4.64 x 10 ⁻⁴	4.883 x 10 ⁻⁴	4.7 x 10 ⁻⁴	4.67 x 10 ⁻⁴
	Tp _c (°k)	322.8	318	318.85	319
	ρ (Kg/m³)	987.9	989.8	989.46	98 9.4
NI	ZER (μ (Kg/m-s) D A]	5.582 x 10 ⁻⁴	6.06 x 10 ⁻⁴	5.97 x 10 ⁻⁴	5.95 x 10 ⁻⁴
	Pr (adimensional)	3.632	3.96	3.892	3.88
	Re (adimensional)	882.4	5,926.9	9,222.35	17,062.9
	Gz (adimensional)	72.78	532.98	815.1	1503.38
	Gr (adimensional)	711,231.7	564,101.77	657,654.3	673,843.1
	Nu _{B&G} (adimensional)	21.28	49.98	62.22	81.98
	$\frac{\text{Nu}_{B\&G}}{\text{Gz}^{1/3}} \text{ (adimensional)}$	5.1	6.16	6.66	7.16
	Nu _{exp} (adimensional)	9.88	8.47	6.21	6.21
	$\frac{Nu_{exp}}{Gz^{1/3}}$ (adimensional)	2.37	1.04	0.66	0.54

9.3.1 Comparación de Datos Experimentales con Ecuación de Brown y Gauvin.

De los datos tabulados se toma la información para el trazado de la siguiente gráfica comparativa.

Figura 9.2 Gráfica de Comparación de Datos Experimentales con Ecuación de Brown y Gauvin (Convección Forzada).

9.3.2 Derivación de Ecuación Matemática en Convección Forzada.

Trazando la línea media através de los puntos de gráfica 9.2 obtenemos la ecuación:

$$N_{u} = 6.58 \text{ Gz}^{1/3} - 0.87 \text{ Nu}_{B\&G}$$
 (9.6)

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN DIRECCIÓN GENERAL DE BIBLIOTECAS

CAPÍTULO 10 ANÁLISIS E INTERPRETACIÓN DE RESULTADOS

UN 10.1 Determinación de Parámetros IA DE NUEVO LEÓN

Hay una variedad de factores o variables que influyen en la razón de transferencia de calor entre una superficie y un fluido y afectan por tal motivo a los coeficientes de transferencia de calor. Estas variables son propiedades del fluido, características de las superficies y de los flujos, e influyen en diferente grado, por lo que, resulta dificil un cálculo directo de los coeficientes siendo lo usual agruparlas, formando módulos o parámetros adimensionales que nos permiten medir su grado de influencia, establecer ecuaciones y una mejor comprensión del fenómeno.

Entre estos parámetros adimensionales que reciben nombres particulares están:

• El número de Reynolds (Re) cuya ecuación es:

$$\operatorname{Re} = \frac{\rho V D}{\mu} = \frac{4m}{\pi D \mu} = \frac{V D}{v}$$
(10.1)

y establece una relación entre la fuerza del fluido inercial a viscosa.

• El número de Prandtl (Pr) cuya ecuación es:

nos da la relación del calor convectivo al conductivo y a partir de este número se \mathbb{R} encuentra el valor de \overline{h} como un valor medio. DE BIBLIOTECAS

• El número de Grashof (Gr) cuya ecuación es:

$$Gr = \frac{\rho^2 g \beta \Delta T D^3}{\mu^2}$$
(10.4)

nos da la relación de las fuerzas flotantes a las viscosas.

• El número de Rayleigh (Ra) cuya ecuación es:

$$Ra = Gr \operatorname{Pr} = \frac{\rho g \beta \Delta T D^3}{\mu \alpha}$$
(10.5)

es una combinación de Grashof y Prandt

• El número de Graetz (Gz) cuya ecuación es:

$$Gz = \operatorname{Re} \operatorname{Pr} \frac{D}{L} = \frac{\rho c_{\rho} V D^{2}}{kL} \qquad (10.6)$$
es una combinación de Reynolds, Prandt y la relación del diámetro y la longitud del tubo.

Estos son algunos de los parámetros más usados y los términos en sus ecuaciones se han citado previamente. A continuación se da una tabla con los valores de estos parámetros para las diferentes pruebas realizadas y se incluyen algunos otros términos de interés con el fin de analizarlos.

10.2 Observaciones.

10.2.1 Observaciones en pruebas de convección libre.

De los datos tabulados para las pruebas de convección libre se observa lo siguiente con relación a las pruebas de convección forzada.

UNI

A MUERSIDA

Tabla 10.1 Concentrado de Valores de Parámetros Adimensionales.

Darómetros		Pruebas de Co	nvección Libre			ruebas de Con	vección Forzads	
	Vert 3 cm	Vert 1 cm	Vert 0 cm	Vert -1.8 cm	100 - 1 000	2 000 - 6 000	Re 6 000 - 10 000	Re > 10 000
Re	7188.88	2192.4	1554.9	754.5	882.4	5926.9	9222.35	17062.9
Pr	3.175	2.66	2.514	2.128	3.632	3.96	3.892	3.88
Nu	12.96	H.07	11.61	10.38	9.88	8.47	6.21	6.21
Ğ	1657213.2	2799185.2	3217485.8	3139171.3	711231.7	564101.7	657654.3	673843.1
Ra	5261651.9	7745832.7	8088759.5	6680156.6	2583193.5	2233843.0	2559590.7	2614511.3
$Ra\frac{D}{L}$	119483.3	169082.4	183682.2	151695.2	58660.0	50726.85	58124.0	59371.1
Gz	518.31	132.43	88.77	36.46	72.78	532.98	815.1	1503.38
Ts (°K)	353.65	365.7	368.55	369.8	334.6	330.6	333.65	334.15
Tf, (°K)	307.35	317	323.85	343.8	310.95	305.39	304.05	303.85
ΔT(Ts-Tf,) (°K)	46.3	48.7	44.7	26	23.65	25.21	29.6	30.3
4	611	529.32	558.53	505.3	459.865	390.37	286.71	286.94
β	339.2x10 ⁻⁶	414 26x10 ⁻⁶	462.61x10 ⁻⁶	588.2x10 ⁻⁶	369x10 ⁻⁶	322.35x10 ⁻⁶	310.85×10 ⁻⁶	309.1×10 ⁻⁶
Qc (w)	749.98	683.4	661.88	348.3	288.33	260.9	224.99	230.5
Q _H (w)	783.57	742.16	671.2	378.1	303.5	267.5	258.85	285.14

Nota: Las propiedades físicas para evaluar los parámetros adimensionales se evaluaron a la temperatura promedio de la película Tp_c excepto β que se evaluó a la temperatura promedio del fluido Tf_c.
1. Las temperaturas de superficie Ts son más altas.

6.

- 2. La diferencia de temperaturas entre la superficie y el fluido es mayor.
- Con temperaturas de superficie más altas se originan coeficientes de dilatación volumétrica, en el fluido refrigerante, mayores.
- Esto ocasiona que las fuerzas de flotación sean más significativas que las fuerzas inerciales.

 Lo cuál se aprecia por los valores altos del número de Grashof y los valores bajos del número de Reynolds.

Los coeficientes de transferencia de calor son más altos cuando las fuerzas de flotación tienen más influencia y van en la misma dirección que las fuerzas inerciales pues afectan la capa límite en la superficie disminuyendo su resistencia.

7. Lo anterior nos da mayor transferencia de calor de la superficie al fluido.

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

10.2.2 Observaciones en las pruebas de convección forzada.

De los datos tabulados para convección forzada se observa lo siguiente en comparación a los de convección libre.

- 1) Las temperaturas de superficie son menores, así como
- 2) Las diferencias de temperaturas entre la superficie y el fluido.
- Con temperaturas de superficie menores, los coeficientes de dilatación volumétrica son menores.

- 4) Las fuerzas de flotación son menos significativas que las inerciales.
- Por lo tanto los valores del número de Grashof son más bajos y los de Reynolds más altos.
- 6) Los coeficientes de transferencia de calor son más bajos por la menor influencia de las fuerzas flotantes en la capa límite, hay que recordar, que las temperaturas de superficie son bajas.
- 7) Y esto nos da menor transferencia de calor de la superficie al fluido.

10.3 Clasificación del Régimen de Flujo de los Datos Experimentales.

Metais y Eckert han establecido límites para diferentes regímenes de flujo en convección libre, forzada y combinadas en tubos verticales. Su información está graficada en la fig. C-1 a) del apéndice C. En esta sección se desean establecer los regímenes de flujo de los datos experimentales bajo el criterio definido por Metais y Eckert para lo cuál se graficarán los datos experimentales de cada prueba en la fig. ya mencionada.

Tabla 10.2 Tabulación de Valores Experimentales para Clasificación de Flujos.

Parámetros	Pru	iebas de Co	nvección L	ibre	Pruebas de Convección Forzada				
	Vert= 3	Vert= 1	Vert≈ 0	Vert= -1.8	Rc 100-1000	Re 2000-6000	Re 6000-10000	Re >10000	
Re	7,188.88	2,192.4	1,554.9	754.5	882.4	5,926.9	9,222.35	17,062.9	
$Ra\frac{D}{L}$	119,4833	169,082.4	183,682.2	151,695.2	58,660.0	50,726.85	58,124.0	59 ,3 71.1	

Figura 10.1 Regímenes de Flujo Mixto por Convección Forzada y Natural. DIRECCIÓN GENERAL DE BIBLIOTECAS

- * Registros como convección libre en la experimentación.
- # Registros como convección forzada en la experimentación

Observaciones:

 Todos los puntos registrados como convección libre en la experimentación realmente quedan en la zona de convección mixta (o combinada) con flujo turbulento en donde la fuerza de flotación tienen mayor influencia que las inerciales esto es notorio de los valores altos del número de Grashof.

2) De los puntos registrados como convección forzada en la experimentación los 2 primeros con números de Reynolds más bajos caen también en la zona de la convección mixta de fluo turbulento, y los dos últimos caen en la región de convección forzada de flujo turbulento en estos puntos hay una menor influencia de las fuerzas de flotación.

10.3 Resúmen.

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

En nuestro estudio concluimos que las fuezas de flotación llamadas también fuerzas del cuerpo están presentes en un fluido normal, en el que la densidad varía con la temperatura, en cualquier flujo de convección forzada que ocurra en el campo gravitacional de la tierra; y es de interés saber cuando ellas pueden ser despreciadas y cuando deben ser consideradas. De los resultados obtenidos en las pruebas con bajos números de Reynolds (bajas velocidades de flujo) la fuerza de flotación resultaron ser significativas y no despreciables por lo que debe procurarse el cálculo de coeficientes de transferencia de calor con ecuaciones que las contemplen; así se propone el uso de la ecuacion (9.5)

$$Nu = 8.76Gz^{1/3} - 0.942Nu_{B\&G}$$

con una exactitud del 8%

y la ecuación 9.6

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN © DIRECCIÓN GENERAL DE BIBLIOTECAS

CAPÍTULO 11

CONCLUSIONES Y RECOMENDACIONES UIAITA RECOMENDACIONES

UNIVE 11.1 Conclusiones y Recomendaciones. E NUEVO LEÓN

Las ecuaciones adimensionales resultantes pueden ser utilizadas para predecir coeficientes de transferencia de calor en convección libre y forzada combinado.

La ecuación (9.5)

 $Nu = 8.76Gz^{1/3} - 0.942Nu_{B\&G}$

donde:

$$Nu_{B\&G} = 1.75 \left(\frac{\mu_f}{\mu_s}\right)^{0.14} \left[Gz + 0.012 (GzGr^{1/3})^{4/3}\right]^{1/3}$$

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

Y la ecuación (9.6) DIRECCIÓN GENERAL DE BIBLIOTECAS

 $Nu = 6.58Gz^{1/3} - 0.87(Nu_{B\&G})$

donde:

 $Nu_{B\&G}$ se evalúa igual que para la ecuación (9.5).

DIRECCIÓN GENERAL DE BIBLIOTECAS

BIBLIOGRAFÍA

- Bennet C. O. y J. E. Meyers. Momentum, Heat, and Mass Transfer, McGraw-Hill, 1962.*
 - Bird, R. B., W. E. Stewart y E. N. L. Lightfast. Transport Phenomena, John Wiley & Sons, Nueva York, 1960. *
 - Chapman, A. J. Fundamental of Heat Transfer, Macmillan, Nueva York, 1987.*
 - Cremer, H. W. y S. B. Watkins. Chemical Engineering Practice, Vol. 7, Butterworth, 1963. *
- Eckert, E. R. G. y R. M. Drake, Jr. Heat and Mass Transfer, 2a. Ed., McGraw-Hill, 1959.*
- UNIVER Son Eckert, E. R. G. y R. M. Drake, Jr. Analisis of Heat and Mass Transfer, International Student Edition, McGraw-Hill, 1972. *
 - Gebhart, B. Heat Transfer, 2a. Ed., McGraw-Hill, Nueva York, 1971. *
 - Kern, D. Q. Process Heat Transfer, 4a. Ed., Harper & Row, Nueva York, 1986.*
 - Mc Adams, W. H. Heat Transmission, 3a. Ed., McGraw-Hill, Nueva York, 1954.*
 - Mills, A. F. Transferencia de Calo, IRWIN, 1994.
 - Bibliografía Clásica.

.

MEMORIAS:

Heat Transfer 1982, General Papers of Proceedings of the Seventh International Heat Transfer Conference, München, Fed. Rep. Of Germany. Editada por U. Grigull, E. Hahne, K. Stephan, and J. Straub en Coperación con los Miembros del Comité Científico Internacional.

Heat Transfer 1986. General Papers of Proceedings of the Eight International Heat Transfer Conference, San Francisco, Ca. U.S.A. Editado por C.L. Tien, V.P. Carey, and J.K. Ferrel, en Cooperación con los Miembros del Comité Científico Internacional.

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN © DIRECCIÓN GENERAL DE BIBLIOTECAS

LISTADO DE TABLAS

Tabla

Página

2.1	Comparación de trabajos de investigación18
3.1	Ordenes de magnitud de algunos coeficientes de
STONOM	transferencia de calor medios
ALERE FLAIMAN VERITATIS	Correlaciones para evaluar coeficientes de transferencia
E	de calor para fluidos que fluyen en tuberías circulares 42
¥ 61	Datos obtenidos en el sistema de pruebas de
	convección libre
7.1	Datos obtenidos en el sistema de pruebas de
	convección forzada
8.1	Concentrado de resultados de todas las pruebas
UNIVER 94	Concentrado de resultados de parámetros comparativos
	para pruebas de convección libre
DIRE9.20	Concentrado de resultados de parámetros comparativos
	para pruebas de convección forzada97
10.1	Concentrado de valores de parámetros adimensionales 103
10.2	Tabulación de valores experimentales para
	clasificación de flujos105

LISTADO DE GRÁFICAS

Figura

Página

	3.1	Esquema de transferencia de calor convectiva de una
	ATO	superficie a un fluido
R	3.2	Algunos flujos típicos
SI	3.3	Capa límite en convección natural sobre una pared vertical 25
ER	3,4	Superficie isotérmica para definir el coeficiente de
E		Transferencia de calor medio h _c
J.	3.5	Gráfica de gradientes de temperatura
	3.6	Diagrama de temperaturas para dos fluidos que
		Intercambian calor a través de una superficie
UN	V3.7	Balance de momentos sobre un elemento de NUEVO LEON
		un fluido en un tubo
	3.8	Gráfica del número de Nusselt Vs (Gr. Pr) (r/L)
	4.1	Balance de energía en un tubo con flujo fijo
	4.2	Gráfica de f ₁ y f ₂ contra Nu/Gz44
	4.3	Gráfica para analizar el fenómeno de condensación
		sobre una superficie fría45
	5.1a	Diagrama del equipo para pruebas Scott de Convección
		libre y forzada
	5.1b	Diagrama que ilustralos principales componentes del
		equipo de pruebas Scott para Convección libre y forzada

APÉNDICES

A.I Resumen de los grupos adimensionales mas importantes	
usados para caracterizar la transferencia de momento y UNIVER a la transferencia de calor convectiva	E.118
A.2 Gases: propiedades térmicas DIRECCION GENERAL DE BIBLIOTECAS	119
A.3 Líquidos dieléctricos: propiedades térmicas	123
A.4 Coeficientes de dilatación volumétrica de algunos líquidos	126
A.5 Densidad y coeficiente de dilatación volumétrica del agua	126
A.6 Propiedades termodinámicas del vapor saturado	127

 Tabla A.1 Resumen de los grupos adimensionales más importantes usados para caracterizar la transferencia de momento y a la transferencia de calor convectiva.

	Grupo 🥠	Definición	Uso
	Coeficiente de fricción	$C_{f} = \frac{\tau_{s}}{(1/2) \rho V^{2}}$	Flujos externos
	Factor de fricción	$f = \frac{\Delta P}{(L / D) (1 / 2) \rho V^2}$	Flujos internos
VER	Número-de Eüler	$Eu = \frac{\Delta P}{\rho V^2}$	* Flujo a través de orificios
	Número de Reynolds	$Re = \frac{VL}{v}$	Flujos forzados
	Número de Nusselt	$Nu = \frac{h_c L}{k}$	Flujos forzados y flujos naturales
UNI	Número de Stanton	$JTON = \frac{h_{c}}{\rho c_{p} VA} D$	E NUE Flujos forzadosón
	Número de Prandtl	$\Pr = \frac{c_{p} \mu}{\Delta \alpha} = \frac{\nu}{\alpha}$	Flujos forzados y flujos naturales
	Número de Grashof	$Gr = \frac{\beta \Delta T g L^3}{v^2}$	Flujos naturales con Pr~1
	Número de Peclet	$Pe = \frac{VL}{\alpha}$	Flujos laminares internos, flujos de arrastre externos
	Número de Rayleigh	$Ra = \frac{\beta \Delta T g L^3}{\nu \alpha}$	Flujos naturales con $Pr \gg 1$
	Número de Boussinesq	$Bo = \frac{\beta \Delta T g L^3}{\alpha^2}$	Flujos naturales con $Pr \ll 1$
	Número de Brinkman	$Br = \frac{V^2 \mu}{k \Delta T}$	Flujos con disipación viscosa

Gas	T K	k W/m K	ρ kg/m ³	c, J/kg K	μ × 10 ^{6 δ} kg/m s	v × 10 ^{6 b} m ² /s	Pr
Aire	150	0.0158	2.355	1017	10.64	4.52	0.69
(PE 82 K)	200	0.0197	1.767	1009	13.59	7.69	0.69
- -	250	0.0235	1.413	1009	16.14	11.42	0.69
	260	0.0242	1.360	1009	16.63	12.23	0.69
	270	0.0249	1.311	1009	17.12	13.06	0.69
	280	0.0255	1.265	1008	17.60	13.91	0.69
	290	0.0261	1.220	1007	18.02	14.77	0.69
	300	0.0267	1.177	1005	18.43	15.66	0.69
TONOM	310	0.0274	1.141	1005	18.87	16.54	0.69
	320	0.0281	1.106	1006	19.29	17.44	0.69
I AND RESILENCE	330	0.0287	1.073	1006	19.71	18.37	0.69
TALERE FLAMMAM	340	0.0294	1.042	1007	20.13	19.32	0.69
	350	0.0300	1.012	1007	20.54	20.30	0.69
	360	0.0306	0.983	1007	20.94	21.30	0.69
	370	0.0313	0.956	1008	21.34	22.32	0.69
	380	0.0319	0.931	1008	21.75	23.36	0.69
	390	0.0325	0.906	1009	22.12	24.42	0.69
	400	0.0331	0.883	1009	22.52	25.50	0.69
	500	0.0389	0.706	1017	26.33	37.30	0.69
	600	0.0447	0.589	1038	29.74	50.50	0.69
	700	0.0503	0.507	1065	33.03	65.15	0.70
	800	0.0559	0.442	1089	35.89	81.20	0.70
	900	0.0616	0.397	1111	38.65	98.60	0.70
	1000	0.0672	0.354	1130	41.52	117.3	0.70
	1500	0.0976	0.235	1202	53.82	779.0	0.70
VERSIDA	2000	0.1149	0,176	A 1244E	64.77	368.0 E	0.70
moniaco	250	0.0198	0.842	2200	8.20	9.70	0.91
(PE 239.7 K)	300	0.0246	0.703	2200	10.1	14.30	0.90
DIRECCI	400	0.0364	0.520	2270	13.8	26.60	0.86
DIICLUU	500	0.0511	0.413	2420	17.6	42.50	0.83
Argón	150	0.0096	3.28	527	12.5	3.80	0.68
(PE 77.4 K)	200	0.0125	2.45	525	16.3	6.65	0.68
	250	0.0151	1.95	523	19.7	10.11	0.68
	300	0.0176	1.622	521	22.9	14.1	0.68
	400	0.0223	1.217	520	28.6	23.5	0.67
	500	0.0265	0.973	520	33.7	34.6	0.60
	600	0.0302	0.811	520	38.4	47.3	0.66
	800	0.0369	0.608	520	46.6	76.6	0.66
	1000	0.0427	0.487	520	54.2	111.2	0.6
	1500	0.0551	0.324	520	70.6	218.0	0.6

Tabla A.2 Gases": propiedades térmicas

VERSIDAD.

UNI

(Continúa)

Ga	T K	K Wim K	ρ kg·m'	Cr J.kg K	μ × 10** kg/m ×	1/2 [U'* m*/5	Pı
Piorido de	cathono 25(1	0.01435	2.15	787	12.8	5 47	0.70
(entre)	195 K) 300	0.01810	1 788	811	15.2	8 50	0.71
13801.	400	0.0259	1.341	937	19.6	14 6	071
	500	0 0333	1.073	1011	23.5	21.9	υ − ι
	600	0.0407	0.894	1074	27.1	30-3	0.71
	800	0.0544	0 671	1165	33.4	49 8	D 72
	1000	0.0665	0 537	1232	38 8	72.3	0 72
	1500	0.0945	0.358	1329	51.5	143 8	0 72
TONO	2000	0 1176	0 268	1371	61.9	231.0	0 72
		0.00760	6 664	\$60	10.09	1.038	1.80
Kemgerank		() ()))05	5 763	501	10 70	1 7.10	1.70
	2141	0.00000	1017	-0-	12.60	7 566	0.78
	37(1	0.007	1 60S	621	13.30	7 008	0.77
		0.010	1 334	630	14.16	3 768	6 77
	360	0.0179	4 093	655	14.10	3.644	0.76
	340	0.0140	3 878	671	15.66	4 038	0.75
	5400	0.0151	3 684	685	16.39	4 449	0 74
	120	0.0162	3 509	698	17 10	4,875	0.74
	141	0.0173	3 349	710	17 80	5 314	0 73
	460	0.0184	3 203	721	18.48	5 770	0 72
Refrigerante	e-113 320 T	0 00865	7.120	651	10.77	1.513	0.81
(PE 32	(0.7 K) 340	0.00958	6 716	668	11.24	1 674	0.78
	36(1	0.01056	6.343	688	11.69	843	1) 76
	380	0 01154	6 009	7(16	12.12	2 015	0 74
UNIVERS		0 01254	5 709 🛆	724	12 53	2.195	0 72
	420	0.01359	5.437	742	12 93	2 378	0.71
	440	0 01483	5 190	758	13.35	2 572	0.68
DIRE	CCIÓN 🖑	EN ^{0.01623}	14964E	BIB	LIC ³⁻⁷⁸ E	CA376	0.66
Helio	50	0.046	0 974	5200	6.46	6 63	0 73
(PE 4)	K) 100	0 071	0.487	5200	9.94	20.4	0 72
	150	0.096	0.325	5200	13.0	40.0	0 70
	2(8)	0.116	0.244	5200	15.6	64.0	0 70
	250	0 133	0 195	5200	17.9	92.0	0 70
	3(X)	0 149	0.1624	5200	20.1	124 0	() 7()
	400	0 178	0 1218	5200	24.4	200 0	0 71
	500	0 205	0 0974	5200	28.2	290.0	0.72
	600	0 229	0.0812	5200	317	390.0	0 72
	Ben)	0.273	0.0609	5200	37,8	620.0	0 72
	1000	0 313	0 (1487	5200	43.3	890 ()	0 72

Tabla A.2 (Continuia de la págine anterior)

(Continua)

APÉNDICES

Apéndice A: Grupos adimensionales y propiedades

Lista de Tablas

VIVERSID.

NEF	A.1 la	Resumen de los grupos adimensionales más importantes usados para caracterizar transferencia de momento y a la transferencia de calor convectiva
K	A.2	Gases: propiedades térmicas119
	A.3	Líquidos dieléctricos: propiedades térmicas123
UNI	A.4 VEI A.5	Coeficientes de dilatación volumétrica de algunos líquidos
	A.6	Propiedades termodinámicas del vapor saturado127

Γ	Grupo	Definición	Uso
	Coeficiente de fricción superficial	$C_f = \frac{\tau_s}{(1/2) \rho V^2}$	Flujos externos
	Factor de fricción	$f = \frac{\Delta P}{(L / D) (1 / 2) \rho V^2}$	Flujos internos
	Número de Euler	$Eu = \frac{\Delta P}{\rho V^2}$	Flujo a través de orificios
	Número de Reynolds	$Re = \frac{VL}{v}$	Flujos forzados
E E E	Número de Nusselt	$Nu = \frac{h_c L}{k}$	Flujos forzados y flujos naturales
VER	Número de Stanton	$St = \frac{h_c}{\rho c_p V}$	Flujos forzados
E.	Número de Prandtl	$\Pr = \frac{c_p \mu}{k} = \frac{v}{\alpha}$	Flujos forzados y flujos naturales
	Número de Grashof	$Gr = \frac{\beta \Delta T g L^3}{v^2}$	Flujos naturales con Pr ~ 1
UN	Número de Peclet VERSIDAD A	UTÓNO ^P e= <u>VL</u> IalA DI	Flujos laminares internos, flujos de arrastre externos
	Número de Rayleigh	$Ra = \frac{\beta \Delta T g L^3}{2}$	Flujos naturales con Pr $\gg 1$ \otimes
	DIRECCIÓN G	ENERALYBE BI	BLIOTECAS
	Número de Boussinesq	$B_0 = \frac{\beta \Delta T g L^3}{\alpha^2}$	Flujos naturales con $Pr \ll 1$
	Número de Brinkman	$Br = \frac{V^2 \mu}{k \Delta T}$	Flujos con disipación viscosa

 Tabla A.1 Resumen de los grupos adimensionales más importantes usados para caracterizar la transferencia de momento y a la transferencia de calor convectiva.

Gas	7 K	k W/m K	ρ kg/m³	c, J⁄kg K	μ × 10** kg/m s	ν × 10** m²/s	Pr
Aire	150	0.0158	2.355	1017	10.64	4.52	0.69
(PE 82 K)	200	0.0197	1.767	1009	13.59	7.69	0.69
	250	0.0235	1.413	1009	16 14	11.42	0.69
	260	0.0242	1.360	1009	16.63	12.23	0.69
	270	0.0249	1.311	1009	17.12	13.06	0.69
	280	0.0255	1.265	1008	17.60	13.91	0.69
	290	0.0261	1.220	1007	18.02	14.77	0.69
	300	0.0267	1.177	1005	18.43	15.66	0.69
	310	0.0274	1.141	1005	18.87	16.54	0.69
TONOM	320	0.0281	1.106	1006	19.29	17.44	0.69
	330	0.0287	1.073	1006	19.71	18.37	0.69
	340	0.0294	1.042	1007	20.13	19.32	0.69
VERITATIS	350	0.0300	1.012	1007	20.54	20.30	0.69
	360	0.0306	0.983	1007	20.94	21.30	0.69
	370	0.0313	0.956	1008	21.34	22.32	0.69
	380	0.0319	0.931	1008	21.75	23.36	0.69
	390	0.0325	0.906	1009	22.12	24 42	0.69
	400	0.0331	0.883	1009	22.52	25.50	0 69
	500	0.0389	0.706	1017	26.33	37.30	0.69
	600	0.0447	0.589	1038	29.74	50.50	0.69
	700	0.0503	0.507	1065	33.03	65.15	0 70
	800	0 0559	0.442	1089	35.89	81.20	0 70
	900	0 0616	0.392	1111	38.65	98.60	0 70
	1000	0.0672	0.354	1130	41.52	117.3	0.70
	1.500	0.0926	0.235	1202	53.82	229.0	0 70
	2000	0 1149	0.176	1244	64.77	368.0	0.70
UNIVERSID.	AD _A				INUE		EQN
AMONISCO	230	0.0198	0.842	2200	8.20	9.70	0.91
(PE 239.7 K)	300	0.0246	0.703	2200	10.1	14.30	0.90
DIRECCI	0 500	E0.0511R	0 413	2420	BLI7.6 TH	42.50	0.83
Argón	150	0.0096	3.28	527	12.5	3.80	0.68
(PE 77.4 K)	200	0.0125	2.45	525	16.3	6 65	0.68
	250	0 0151	1 95	523	197	10 11	0.68
	300	0.0176	1 622	521	22.9	14.1	0.68
	400	0.0223	1 217	520	28.6	23 5	0.67
	500	0.0265	0 973	520	33.7	34 6	0.66
	600	0 0302	0 811	520	38 4	47 3	0.66
	800	0 0369	0 608	520	46 6	76 6	0 66
	1000	0 0427	0.487	52 0	54.2	111 2	0.66
	1500	0 0551	0.324	520	70 6	218.0	0.67

Tabla A.2 Gases": propiedades térmicas

(Continua)

Tabla A.2 (Continua de la página anterior)

A	Ţ		P	с, с _г	$\mu \times 10^{**}$	r > 10°*	
Gav	<u> </u>	WINK	kg m	JKgK	Kg/m >		<u>Pr</u>
Bioxido de carbono	250	0.01435	2.15	782	12.8	5 97	0 70
(subl. # 195 K)	300	0.01810	1.788	8.4.4	15.2	8 50	0.51
	400	0.0259	1.341	937	19.6	14 6	0.71
	500	0 0333	1.073	1011	23.5	21.9	0 1
	600	0.0407	0.894	1074	27.1	30/3	0.21
	800	0 0544	0.671	1165	33.4	44 X	0 72
	1000	0.0665	0 537	1232	38 8	-13	0 72
	1500	0.0945	0.358	1329	51.5	143 8	0 72
	2000	0.1176	0 268	[37]	61 9	231 0	0 72
Refrigerante-12	260	0.00769	5.668	560	10.98	1.938	() 80)
(PE 243 K)	280	0.00868	5 263	582	11 80	2 242	() 74
TUNUMA	300	0.00970	4.912	602	12.60	2.566	0.78
	320	0.0107	4 605	621	13 39	2 90ik	0.77
TALERE FLAMMANT	340	0.0118	4 334	6.39	14.16	3 268	077
VERITATIS	360	0.0129	4.093	655	14.92	3.644	() 76
	380	0.0140	3.878	671	15 66	4 038	0.75
	<400	0.0151	3.684	685	16.39	1 770	() 74
	(420	0.0162	3.509	698	17.10	4.875	() 74
	440	0.0173	3,349	710	17 80	5 314	0 73
	460	0.0184	3 203	721	18.48	5.770	0.72
Refrigerante-113	320.7	0.00866	7.120	651	10.77	1.513	0.81
(PE 320.7 K)	340	0.00958	6 716	668	11.24	1 674	0.78
	360	0.01056	6 343	688	11.69	1 843	1) 76
	380	0.01154	6 009	706	12.10	2 015	0.74
	4(K)	0.01254	5 709	724	12.53	2.195	0.72
	420	0.01359	5.437	742	12 93	2 378	0 71
	4-40	0.01483	5 190	758	13.35	2 572	0.68
VERSIDAI	460	0.01623	4.964	DP^{4}	1.3-78	2.776	0.66
Helio	50	0.046	().974	5200	6.46	6 63	0 73
(PE 4.3 K)	100	0.072	0 487	5200	9.94	20-4	0 72
DIRECCIU	1.50	0.096	0.325	5200		A 40.0	0 70
	200	0 116	0.244	5200	15.6	64.0	0.70
	250	0.133	0 195	5200	17.9	92.0	0 70
	3(x)	0 149	0.1624	5200	20.1	124 0	0.70
	400	0.178	0 1218	5200	24 4	200 0	0.71
	500	0.205	0 (1974	5200	28.2	290.0	0 72
	600	0.229	0.0812	5200	317	390.0	() 72
	800	0.273	0.0606	5200	37.8	620.0	0 72
	[(X,X)	0.313	0.0487	5200	43.3	890 0	(1.72

(Continua)

Tabla	A.2 (Continúa	de la página	enterior)

Gas	Т К	k W/m K	ρ kg/m³	c, J/kg K	μ × 10°° kg/m s	$\nu \times 10^{\circ \circ}$ m ² /s	Pr
Hidrógeno	20	0.0158	1.219	10400	1.08	0.893	0.72
(PE 20.3 K)	40	0.0302	0.6094	10300	2.06	3.38	0.70
	60	0.0451	0.4062	10660	2.87	7.06	0.68
	80	0.0621	0.3047	11790	3.57	11.7	0.65
	100	0.0805	0.2437	13320	4.21	17.3	0.70
	150	0.125	0.1625	16170	5.60	34.4	0.73
	200	0.158	0.1219	15910	6.81	55.8	0.68
	250	0.181	0.0975	15250	7.91	81.1	0.67
TONOM	300	0.198	0.0812	14780	8.93	109.9	0.67
	400	0.227	0.0609	14400	10.8	177.6	0.69
Contraction Contraction	500	0.259	0.0487	14350	12.6	258.1	0. 70
ALERE FLAMMAN	600	0.299	0.0406	14400	14.3	350.9	0.69
VERITATIS	Z 800	0.385	0.0305	14530	17.4	572.5	0.66
	1000	0.423	0.0244	14760	20.5	841.2	0.72
2/ 3/2/	<1500	0.587	0.0164	16000	25.6	1560	0.70
	2000	0.751	0.0123	17050	30.9	2510	0.70
Метсипо	650	0.0100	3.761	104	64.08	17.04	0.67
(PE 630 K)	700	0.0108	3.493	104	69.25	19.83	0.67
	800	0.0124	3.056	104	79.45	26.00	0.67
	900	0.0139	2.716	104	89.30	32.87	0.67
	1000	0.0154	2.445	104	98.67	40.36	0.67
	1200	0.0181	2.037	104	115.9	56.93	0.67
	1400	0.0206	1.746	104	132.1	75.68	0.67
	1600	0.0231	1.528	104	148.3	97.11	0.67
	1800	0.0258	1.358	104	165.1	121.5	0.67
JNIVERSIDAI	2000	0.0282	1.222	D104	180.9	148.0	0.67
Nitrógeno	150	0.0157	2.276	1050	10.3	4.53	0.69
(PE 77.4 K)	200	0.0197	1.707	1045	13.1	7.65	0.69
DIRECCIO	250	0.0234	1.366	- 1044	15.5 F.	A 11.3	0.69
	300	0.0267	1.138	1043	17.7	15.5	0.69
	400	0.0326	0.854	1047	21.5	25.2	0.69
	500	0.0383	0.683	1057	25.1	36.7	0.69
	600	0.044	0.569	1075	28.3	49.7	0.69
	800	0.055	0.427	1123	34.2	80.0	0.70
	1000	0.066	0.341	1167	39.4	115.6	0.70
	1500	0.091	0.228	1244	51.5	226.0	0.70
	2000	0.114	0.171	1287	61.9	362.0	0.70

(Continúa)

Tabla A.2 (Termine)

Gas	т К	k W/m K	p kg/m³	c, J⁄kg K	μ × 10°* kg/m s	ν × 10 ⁴⁴ m ² /s	Pr
Oxigeno	150	0.0148	2.60	890	11.4	4.39	0.69
(PE 90.2 K)	200	0.0192	1.949	900	14.7	7.55	0.69
	250	0.0234	1.559	910	17.8	11.4	0.69
	300	0.0274	1.299	920	20.6	15.8	0.69
	400	0.0348	0.975	945	25.4	26.1	0.69
	500	0.042	0.780	970	29.9	38.3	0.69
	600	0.049	0.650	1000	33.9	52.5	0.69
	800	0.062	0.487	1050	41.1	84.5	0.70
ONION	1000	0.074	0.390	1085	47.6	122.0	0.70
TUNUMA	1500	0.101	0.260	1140	62.1	239	0.70
11100 P 27 512 Para	2000	0.126	0.195	1180	74.9	384	0.70
Vapor saturado	273.15	0.0182	0.0048	1850	7.94	1655	0.81
(presión distinta	280	0.0186	0.0076	1850	8.29	1091	0.83
de 1 am)	290	0.0192	0.0142	1860	8.69	612	0.84
	300	0.0198	0.0255	1870	9.09	356.5	0.86
	310	0.0204	0.0436	1890	9.49	217.7	0.88
	320	0.0210	0.0715	1890	9.89	138.3	0.89
	330	0.0217	0.1135	1910	10.3	90.7	0.91
	340	0.0223	0.1741	1930	10.7	61.4	0.92
	350	0.0230	0.2600	1950	11.1	42.6	0.94
	360	0.0237	0.3783	1980	11.5	30.4	0.96
	370	0.0246	0.5375	2020	11.9	22.1	0.98
	373.15	0.0248	0.5977	2020	12.0	20.1	0.98
	380	0.0254	0.7479	2057	12.3	16.4	1.00
	400	0.0277	0.555	1900	14.0	25.2	0.96
sobrecalentado	500	0.0365	0.441	1947	1 Y Y 2 Y	40.1	0.94
(PE 373.2 K)	600	0.046	0.366	2003	21.4	58.5	0.93
••• 30. 10 (1997) 2	800	0.066	0.275	2130	28.1	102.3	0.91
DIRECCI	1000	0.088	0.220	2267	I I 34.3 F	A 155.8	0.88
DIRLOUR	1500	0.148	0.146	2594	49.1	336.0	0.86

"A una presión de 1 atm a menos que se indique lo contrario.

^bEn esta tabla y en las que siguen se debe leer $v \times 10^6 = 4.52$, es decir, $v = 4.52 \times 10^{-6} \text{ m}^2/\text{s}$.

	Liquido saturado (Punto de fusión) (Punto de ebulhción) (Calor latente en el PE)	Т К	k W/m K	р kg/m³	c, J⁄kg K	μ × 104 kg/m s	ν × 10° m²/s	Рт
	Amoniaco	220	0.547	705	4480	3.35	0.475	2.75
	(PF E 195 K)	230	0.547	696	4480	2.82	0.405	2.31
	(PE 240 K)	240	0.547	683	4480	2.42	0.355	1.99
	$(1.37 \times 10^6 \text{ J/kg})$	250	0.547	670	4500	2.14	0.320	1.76
		260	0.544	657	4550	1.93	0.293	1.61
		270	0.540	642	4620	1.74	0.271	1.49
		280	0.533	631	4710	1.60	0.253	1.41
	ONION	290	0.522	616	4800	1.44	0.234	1.33
	TONOM	300	0.510	602	4900	1.31	0.217	1.26
		310	0.496	587	4990	1.19	0.202	1.19
191	ALERE FLAMMAN	320	0.481	572	5080	1.08	0.188	1.14
6	Bióxido de carbono	220	0.080	1170	1850	1.39	0.119	3.22
$ \Xi $	(subl. a 195 K)	230	0.096	1130	1900	1.33	0.118	2.64
3	$(0.57 \times 10^6 \text{ J/kg})$	240	0.1095	1090	1950	1.28	0.117	2.27
X		250	0.1145	1045	2000	1.21	0.1155	2.11
HIII		260	0.113	1000	2100	1.14	0.1135	2.11
		270	0.1075	945	2400	1.04	0.1105	2.33
		280	0.100	885	2850	0.925	0.1045	2.64
		290	0.090	805	4500	0.657	0.094	3.78
		300	0.076	670	11000	0.549	0.082	7.95
	Aceite de motor	280	0.147	895	1810	21900	2450	27000
	Sin usar	290	0.146	889	1850	10900	1230	13900
	(SAE 50)	300	0.1445	883	1900	5030	570	6600
T TN TT		310	0.1435	877	1950	2500	285	3400
UNI	VERSIDAL	320	0.1425	871	-1990	E 1370	157	1910
		330	0.1415	865	2030	796	92	1140
		340	0.1405	859	2070	515	60	760
	DIDECCIÓN	350	0.139	854	2120	350	TTALAC	530
	DIRECCIUI	360	LO,138 I	848	2160	ID1255UI	C 30/1 O	400
		370	0.137	842	2200	189	22.5	300
	200	380	0.136	837	2250	147	17.6	245
		390	0.135	832	2290	112	13.5	191
		400	0.134	826	2330	88.4	10.7	154
		410	0.133	820	2380	71.3	8.7	128
		420	0.132	815	2420	57.9	7.1	106

Tabla A.3 Líquidos dieléctricos: propiedades termicas

(Continua)

Tabla A.3 (Continuia de la página anterior)

	Líquido saturado (Punto de fusión) (Punto de ebullición) (Calor latente en el PE)	т к	k <u>W/m</u> K	p kg/m³	c, J/kg K	μ × 10 ⁴ kg/m s	v × 10° m²/s	Pr
F	Refrigerante-12 (CCl ₂ F ₂)	220	0.0675	1552	880	4.94	0.318	6.4
	(PF 115 K)	230	0.0680	1528	885	4.39	0.287	5.7
	(PE 243 K)	240	0.0695	1502	890	3.94	0.262	5.0
	$(0.165 \times 10^6 \text{ J/kg})$	250	0.0705	1473	905	3.55	0.241	4.6
	1026 NE 1999 - 19 - 19 <mark>29</mark> 55	260	0.0715	1442	915	3.23	0.224	4.1
		270	0.0725	1407	930	3.04	0.216	3.9
		280	0.073	1370	945	2.85	0.208	3.7
		290	0.0725	1332	960	2.68	0.201	3.6
	ONION	300	0.071	1298	980	2.54	0.196	3.5
TI	ONUM	310	0.0695	1263	995	2.44	0.193	3.5
		320	0.0675	1222	1015	2.32	0.190	3.5
	Refinecrante-113	260	0.0830	1648.5	895	12.32	0.747	13.3
	(Cl ₂ CFCClF ₂)	280	0.0787	1603.4	933	8.85	0,552	10.5
	(PF 236 K)	300	0.0747	1557.1	958	6.64	0.426	8.52
3	(PE 320.7 K)	320	0.0707	1509.1	983	5.20	0.345	7.23
÷	$(0.144 \times 10^{6} \text{ J/kg})$	320.7	0.0705	1507.3	984	5.16	0.342	7.20
		340	0.0664	1459.0	1000	4.19	0.287	6.31
		360	0.0624	1406.0	1029	3.44	0.245	5.67
		380	0.0583	1349.5	1059	2.89	0.214	5.25
		400	0.0543	1287.5	1109	2.46	0.191	5.02
		420	0.0498	1217.8	1176	2.10	0.172	4.96
		440	0.0448	1135.7	1268	1.75	0.154	4.95
		460	0.0386	1029.4	1381	1.33	0.129	4.76
~	Nitrógeno	70	0.151	841	2025	2.17	0.258	2.91
	(PF 63.3 K)	77.4	0.137	809	2060	TT T1.627	0.200	2.43
JINIVI	C (PE 77.4 K) A D	A 80	0.132	796	2070	1.48	0.186	2.32
	(0.200 × 10° J/kg)	90	0.114	746	2130	1.10	0.147	2.05
		100	0.097	689	2310	0.87	0.126	2.07
D	IRECCIÓN	(110)	0.080	620	2710	0.71	A 0.115	2.42
D	INLUCION	120	0.063	525	4350	0.48	0.091	3.30
	Oxigeno	60	0.19	1280	1660	5.89	0.46	5.1
	(PF 55 K)	70	0.17	1220	1666	3.78	0.31	3.7
	(PE 90 K)	80	0.16	1190	1679	2.50	0.21	2.6
	$(0.213 \times 10^6 \text{ J/kg})$	90	0.15	1140	1694	1.60	0.14	1.8
		100	0.14	1110	1717	1.22	0.11	1.50

(Continua)

Tabla A.3 (Termina)

Liquido saturado (Punto de fusión) (Punto de ebullición) (Calor latente en el PE)	T K	k W/m K	ρ kg/m³	c, J/kg K	$\mu \times 10^4$ kg/m s	$\nu imes 10^6$ m ² /s	Pr
Terminol 60°	230	0.132	1040	1380	6210	597	6490
(PF 205 K)	250	0.131	1030	1460	686	66.6	765
(PE 561 K al 10%)	300	0.129	995	1640	63.8	6.41	81.1
	350	0.125	960	1820	21.5	2.24	31.3
	400	0.120	924	1990	10.8	1.17	17.9
	450	0.115	888	2160	6.62	0.745	12.4
	500	0.108	849	2320	4.59	0.541	9.86
ONION	550	0.100	808	2470	3.47	0.429	8.57
Agua	275	0.556	1000	4217	17.00	1.70	12.9
(PF 273 K)	280	0.568	1000	4203	14.50	1.45	10.7
(PE 373 K)	285	0.580	1000	4192	12.50	1.25	9.0
$(2.26 \times 10^6 \text{ J/kg})$	290	0.591	999	4186	11.00	1.10	7.8
	295	0.602	998	4181	9.68	0.97	6.7
340	300	0.611	996	4178	8.67	0.87	5.9
	310	0.628	993	4174	6.95	0.70	4.6
	320	0.641	989	4174	5.84	0.59	3.8
	330	0.652	985	4178	4.92	0.50	3.2
	340	0.661	980	4184	4.31	0.44	2.7
	350	0.669	973	4190	3.79	0.39	2.4
	360	0.676	967	4200	3.29	0.34	2.0
	370	0.680	960	4209	2.95	0.31	1.8
	373.15	0.681	958	4212	2.85	0.30	1.7
	380	0.683	953	4220	2.67	0.28	1.6
	390	0.684	945	4234	2.44	0.26	1.5
	400	0.685	937	4250	2.25	0.24	1.4
VERSIDAL	420	0.684	919	4290	1.93	0.21	1.2
	440	0.679	899	4340	1.71	0.19	1.0
	460	0.670	879	4400	1.49	0.17	0.9
DIDECCIÓN	480	0.657	857	4490	1.37	0,16	0.9
DIRECCIUI	500 · C	0.638	837	4600	1.26	CU0.15	0.9
	520	0.607	820	4770	1.15	0.14	0.9
	540	0.577	806	5010	1.05	0.13	0.9
	560	0.547	796	5310	0.955	0.12	0.9
	580	0.516	787	5590	0.866	0.11	0.9

"Marca registrada' por Monsanto Chemical Company, St. Louis; también se vende con la marca "Santotherm".

, <u></u>		T	$\beta \times 10^3$			$\beta \times 10^3$
	Liquido	K	1/K	Liquido	ĸ	1/K
Ac	eite de motor	273	0.70	Hidrógeno	20.3	15.1
	(SAE 50)	430	0.70	Mercurio	273	0.18
An	noniaco	293	2.45		550	0.18
Eti	ilenglicol	273	0.65	Nitrógeno	70	4.9
	C ₂ H ₄ (OH) ₂	373	0.65	0.074	77.4	5.7
Re	frigerante-12	240	1.85		80	5.9
		260	2.10		90	7.2
		280	2.35		100	9.0
		300	2.75		110	12
		320	3.5		120	24
Re	frigerante-113	260	1.3	Oxigeno	89	2.0
		280	1.4	Sodio	366	0.27
		300	1.5	Terminol 60	230	0.79
		320	1.7		250	0.75
	NOW	340	1.8		300	0.70
		360	20		350	0.70
		380	5 9		400	0.76
ALER	E FLAMMAM	400	25		450	0.84
VI I VI	ERITATIS /1	420	31		500	0.04
		420	3.1		500	0.96
	RAT /	440	9.0		220	1.1
		400	0.2			
	licerina	280	0.47			
S C	C ₃ H ₅ (OH) ₃	300	0.48			
	T K			ρ kg/m ³		$\beta \times 10^{\circ}$ 1/K
	273.15			999.8679		-68.05
	274.00		/	999.9190		-51.30
INIVE	D C T 275.00		ÓNOM	999.9628	EVOIE	-32.74
UNIVE	276.00	AUI	UNUM	999 9896		-15.30
	277.00			999 9999		1.16
	278.00			999 9941		16.78
DIF	REC 279.00	J GEN	FRALD	999 9777	FCAS	31.69
	280.00			999 9367		46.04
	285.00			999 5417		114 1
	290.00			998 8281		174.0
	295.00			997 8332		227.5
	300.00			996 5833		276 1
	310.00			993 4103		361 9
	320.00			989.12		436 7
	320.00			984 25		50.7 504 0
	330.00			070 43		566 0
	340.00			072 71		500.0 604 A
	350.00			915.11		607 0
	300.00			907.12		7.740
	370.00			900.01		120.1
	373.13	6		57.65 062.00		/50.1
	380.00			953.29		/88
	390.00	5 5		945.17		841
	400.00			937.21		896
	450.00			890.47		1129
	500.00)		831.26		1432

Tabla A.4 Coeficientes de dilatación volumétrica de algunos líquidos

T K	$P \times 10^{-5}$	ν m ³ /kg	ρ ka/m ³	$h_{ig} \times 10^{-6}$
<u> </u>				
273.15	0.00610	206.4	0.00484	2.501
274.00	0.00649	194.	0.00514	2,499
275.00	0.00698	181.8	0.00550	2.496
276.00	0.00750	169.8	0.00589	2.494
277.00	0.00805	158.8	0.00630	2.492
278.00	0.00863	148.6	0.00673	2.490
279.00	0.00925	139.1	0.00719	2.488
280.00	0.00991	130.4	0.00767	2.486
281.00	0.01061	122.2	0.00818	2.484
282.00	0.01136	114.6	0.00873	2,482
283.00	0.01215	107.6	0.00929	2.479
284.00	0.01299	101.0	0.00990	2.476
285.00	0.01388	94.75	0.01055	2.473
286.00	0.01482	89.06	0.01123	2,471
287.00	0.01582	83.73	0.01194	2.468
288:00	0.01688	78.75	0.01270	2.466
289.00	0.01800	74.09	0.01350	2.463
290.00	0.01918	69,74	0.01434	2.461
291.00	0.02043	65.68	0.01523	2.459
292.00	0.02176	61.89	0.01616	2,456
293.00	0.02315	58.35	0.01714	2.454
294.00	0.02463	55.05	0.01817	2,451
295.00	0.02619	51.96	0.01925	2.449
296.00	0.02783	49.07	0.02038	2.447
297.00	0.02957	46.37	0.02157	2.444
298.00	0.03139	ÁNT 43.82 A T	0.02282	2.442
299.00	DA 0.03331 I	$ONC_{41,42}AI$	0.02414	2,439
300.00	0.03533	39.15	0.02554	2.437
301.00	0.03746	37.05	0.02700	2,434
302.00	CIO0.03917	ERA 35.07 E F	BIB 0.02851 EC	AS 2.432
303.00	0.04206	33.21	0.03011	2.430
304.00	0.04454	31.46	0.03179	2.427
305.00	0.04714	29.81	0.03355	2,425
306.00	0.04987	28.26	0.03539	2,423
307.00	0.05274	26.81	0.03730	2.421
308.00	0,05576	25.44	0,03931	2.418
309.00	0.05892	24.16	0.04139	2.416
310.00	0.06224	22.95	0.04357	2,414
311.00	0.06572	21.81	0.04585	2.412
312.00	0.06936	20.73	0.04824	2.409

Tabla A. 6 Propiedades termodinámicas del vapor saturado

(Continúa)

	T	$P \times 10^{-5}$	ν	ρ	$h_{1g} \times 10^{-6}$
	<u></u>	Pa	m³/kg	kg/m ³	J/kg
	313.00	0.07318	19.72	0.05071	2.407
	314.00	0.07717	18.75	0.05333	2.404
	315.00	0.08135	17.83	0.05609	2.401
	316.00	0.08573	16.97	0.05893	2.399
	317.00	0.09031	16.16	0.06188	2.396
	318.00	0.09511	15.39	0.06498	2.394
	319.00	0.10012	14.66	0.06821	2.391
	320.00	0.10535	13.98	0.07153	2.389
	321.00	0.11082	13.33	0.07502	2.387
	322.00	0.11652	12.72	0.07862	2.384
	323.00	0.12247	12.14	0.08237	2.382
	324.00	0.12868	11,59	0.08628	2.379
6	325.00	0.13514	11.06	0.09042	2.377
	326.00	0.14191	10.56	0.09470	2.375
	327.00	0.14896	10.09	0.09911	2.372
	328.00	0.15630	9.644	0.1037	2.370
ź	329.00	0.16395	9.219	0.1085	2.367
	330.00	0.17192	8.817	0.1134	2.365
	331.00	0.18021	8.434	0.1186	2,363
	332.00	0.18885	8.072	0.1239	2.360
K-V	333.00	0.19783	7.727	0.1294	2.358
<u> </u>	334.00	0.20718	7.400	0.1351	2.355
	335.00	0.2169	7.090	0.1410	2.353
	336.00	0.2270	6.794	0.1472	2.351
	337.00	0.2375	6.512	0.1536	2.348
TINT	338.00	0.2484	6.244	0.1602	2.346
UN	339.00)AL0.2597	JN 05.987A L)0.1670(2.343
	340.00	0.2715	5.741	0.1742	2.341
	341.00	0.2837	5.509	0.1815	2.339
	342.00	0.2964	RAL 5.288 EB	BL0.1891 EC	AS 2.336
	343.00	0.3096	5.077	0.1970	2.334
	344.00	0.3233	4.876	0.2051	2.332
	345.00	0.3375	4.684	0.2135	2.329
	346.00	0.3521	4.500	0.2222	2.326
	347.00	0.3673	4.325	0.2312	2.324
	348.00	0.3831	4.158	0.2405	2.321
	349.00	0.3994	3.999	0.2501	2.319
	350.00	0.4164	3.847	0.2599	2.316
	351.00	0.4339	3.701	0.2702	2.313
	352.00	0.4520	3.562	0.2807	2.311

Tabla A.6 (Continúa de la página anterior)

128

(Continúa)

T K	$\frac{P \times 10^{-5}}{Pa}$	v m ³ /kg	р kg/m ³	$h_{\rm fg} \times 10^{-6}$ J/kg
353.00	0.4708	3.429	0.2916	2 308
354.00	0.4902	3.301	0.3029	2.306
355.00	0.5103	3.179	0.3146	2.303
356.00	0.5310	3.062	0.3266	2.301
357.00	0.5525	2.951	0.3389	2.299
358.00	0.5747	2.844	0.3516	2.296
359.00	0.5976	2.742	0.3647	2.294
360.00	0.6213	2.644	0.3782	2.291
361.00	0.6457	2.550	0.3922	2.288
362.00	0.6710	2.460	0.4065	2,285
363.00	0.6970	2.373	0.4214	2.283
364.00	0.7240	2.291	0.4365	2.280
365.00	0.7518	2.212	0.4521	2.277
366.00	0.7804	2.136	0.4682	2.274
367.00	0.8100	2.063	0.4847	2.272
368.00	0.8405	1.993	0.5018	2.269
369.00	0.8719	1.925	0.5195	2.267
370.00	0.9044	1.861	0.5373	2.265
371.00	0.9377	1.798	0.5562	2.263
372.00	0.9722	1.738	0.5754	2.260
373.00	1.0076	1.681	0.5949	2.257
373.15	1.0133	1.673	0.5977	2.257
380.00	1.2875	1.337	0.7479	2.238
390.00	1.7952	0.9800	1.020	2.211
400.00	2.4563	0.7308	1.368	2.183
410.00	A) 3.303 (0.5535	1.807	2.154
420.00	4.371	0.4254	2.351	2.124
430.00	5.701	0.3311	3.020	2.093
440.00	CION 7.335 NE	RA10.2609 BI	BLI(3.833) CAS	2.059
450.00	9.322	0.2082	4.803	2.025
460.00	11.708	0.1671	5.984	1.990
470.00	14.551	0.1353	7.391	1.953
480.00	17. 9 08	0.1109	9.017	1.914
490.00	21.839	0.09172	10.90	1.872
500.00	26.401	0.07573	13.20	1.827
510.00	31.676	0.06374	15.69	1.779
520.00	37.726	0.05427	18.43	1.729
530.00	44.618	0.04639	21.56	1.676
540.00	52.420	0.03919	25,52	1.621
550.00	61.200	0.03175	31.50	1.563

Tabla A. 6 (Termina)

Apéndice B: Nomenclatura, unidades y factores de conversión

Lista de Tablas

 B.2 Unidades básicas del sistema internacional y unidades suplementarias	3
R 3 Unidades secundarias del sistema internacional	2
D.5 Cindudes Securitarias eri esterat	
B.4 Unidades reconocidas que no pertenecen al sistema internacional	\$4
B.5 Múltiplos de unidades del sistema internacional	34
B.6 Factores de conversión	35

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN DIRECCIÓN GENERAL DE BIBLIOTECAS

Tabla B.1 Nomenclatura

А	Área normal al flujo de calor
c _p	Calor especifico
C_1, C_1	Constantes
D	Diámetro del tubo
$\mathbf{f_1}$, $\mathbf{f_2}$	Factores de corrección
g	Aceleración de la gravedad
g _c	Constante gravitacional
Gr	Número de Grashof
TONOGZ	Número de Graetz
h	Coeficiente de transferencia de calor local
VERITATIS k	Conductividad térmica
la la	Logaritmo natural
HE STAR	Longitud
Nu	Número de Nusselt
Nu	Número de Nusselt basado en L
Pr	Número de Prandtl
ð	Flujo de calor
UNIVERSIDAD AU	Distancia radial variable Badio del tubo
Re	Número de Revnolds
DIRECCIÓN GE	Número de Reynolds basado en L
Τ	Temperatura
U	Coeficiente de transferencia de calor total
ū	Velocidad media del fluido
u(r), u	Velocidad del fluido
₩,nĭ	Razón de flujo en peso
х	Longitud variable
у	Espesor de película
a	Difusividad térmica

Magnitud	Nombre	Simbolo
Longitud	metro	 m
Masa	kilogramo	kg
Tiempo	segundo	s
Corriente eléctrica	ampere	Α
Temperatura termodinámica	kelvin	ĸ
Cantidad de sustancia ^o	mol	mol
Intensidad luminosa	candela	cd
Ángulo plano	radián	тd
Ángulo sólido	estercorradián	sr

Tabla B.2 Unidades básicas del Sistema Internacional y unidades suplementarias

"El mol corresponde al gramo mol del sistema cgs de unidades.

Tabla B. 3 Unidades secundar	ias del Sistema Intern	nacional	
Magnitud	Nombre	Símbolo	Definición
Frecuencia	hertz	Hz	s ⁻¹
Fuerza	newton	N	kg m/s^2
Presión, esfuerzo	pascal	Pa	N/m^2
Energia, trabajo	joule	J	Nm
Potencia DAD AUT() Nwatt / A DI	ENWJEVO) J/s-ON
Carga eléctrica,			
cantidad de electricidad	coulomb	C	As
Potencial eléctrico, GENE	RAL DE BI	BLIOTEC	AS
fuerza eletromotriz	volt	V	J/C
Capacitancia eléctrica	farad	F	C/V
Resistencia eléctrica	ohm	Ω	V/A
Conductancia eléctrica	siemens	S	Ω^{-1}
Flujo magnético	weber	Wb	Vs
Densidad de flujo magnético	tesla	Т	Wb/m ²
Inductancia	henry	H	Wb/A
Flujo luminoso	lumen	lm	cd sr
Iluminancia	lux	lx	lm/m^2
Temperatura Celeine	orado Celsius	°C	$1^{\circ}C = 1$

^aTemperatura Celsius $T - T_0$, donde T se expresa en kelvins y $T_0 = 273.15$ K. La unidad grado Celsius es igual a la unidad kelvin.

Magnitud	Nombre	Símbolo	Definición
Tiempo	minuto	min	60 s
Sensing and a 11	hora	h	60 m
	dia	d	24 h
Ángulo plano	grado	0	$(\pi/180)$ rad
nanovani 🖬 statu o 🕵 o novembro d	minuto	,	(1/60)°
	segundo	11	(1/60)'
Volumen	litro	1	10^{-3} m^3
Masa	tonelada (métrica)	t	10^3 kg
Energia	electrón volt	eV	$1.60219 \times 10^{-19} \text{ J}$
Masa de los átomos	unidad de masa atómica	u	1.66057×10^{-27} kg
Longitud	unidad astronómica	AU	$1.49597.870 \times 10^{6}$ m
	parsec	pc	206,265 AU
Presión	bar	bar	10 ⁵ Pa

Adaptado de NZS 6501:1092 "Units of Measurement", Standards Association of New Zealand, Wellington.

Tabla B. 4 Unidades reconocidas que no pertenecen al Sistema Internacional

134

Tabla B. 6 Factores de conversión

	Temperatura	$0.555 \text{ K/}^{\circ}\text{R}$ $T[^{\circ}\text{R}] = T[^{\circ}\text{F}] + 459.67$	$T[K] = T[^{\circ}C] + 273.15$
Longitud Velocidad		0.3048 m/pie 2.54 cm/pulgada	1609 m/mi
		0.3048 (m/s)(pie/s) 0.4470 (m/s)(mph)	0.2778 (m/s)(km/h) 1.6093 (km/h)/(mph)
	Volumen	$2.832 \times 10^{-2} \text{ m}^{3}/\text{pie}^{3}$ 3.785 × 10 ⁻³ m ³ /gal 42 gal/bbl (aceite)	10^{-3} m^3 /litro 4.545 × 10 ⁻³ m ³ /galón imperial
	Masa	0.4536 kg/lb	14.59 kg/slug
	Fuerza	4.448 N/lb	10^{-5} N/dina
	Esfuerzo	47.88 (N/m ²)(lb _j /pie ²) 6895 (N/m ²)psi	10^{-1} (N/m ²)(dinz/cm ²)
	Presión	6895 Pa/psi	10 ⁵ Pa/bar
	VERITATIS	1.0133 × 10 ⁵ Pa/atm 760 ton/atm	133.3 Pa/torr
5	Energía, trabajo	1055 J/Btu	10 ⁻⁷ J/erg
R		4187 J/kcal ⁴	1.356 J/pie lb _f
8		1.6021×10^{-19} J/ev	
	Potencia	0.2931 W/(Btu/hr)	0.7457 kW/hp
K	Flujo de calor por unidad de área	3.155(W/m ²)(Btu/pie ² hr)	$4.187 \times 10^4 \ (W/m^2)/(cal/cm^2s)$
	Coeficiente de	5 679	4 197 \$ 104
	de calor	$(W/m^2 K)(Btu/nie^2 hr \infty)$	$(W/m^2 K)/(cal/cm^2 s^{\circ}C)$
	Eluio de maca nor	1 3563 × 10 ⁻³	(min replanding of
UNI	unidad de área	(kg/m ² s) (lb/pie ² hr) A DE N	$10^{-1}(kg/m^2)/(g/cm^2s)$
	riujo de moies por	$(kmol/m^2s)/(lh mole nie^2 hr)$	$(rmol/m^2s)/(r mole/rm^2s)$
Densidad CIÓN C		515.3 (kg/m ³)/(lb/pie ³) 515.3 (kg/m ³)/(slug/pie ³)	10 ³ (kg/m ³)/(g/cm ³)
	Entalpia	2326 (J/kg)/(Btu/lb)	4187 (J/kg)/(cal/g)
	Calor especifico	4187 (J/kg K)/(Btu/lb °F)	4187 (J/kg K)/(cal/g °C)
	Viscosidad		
dinámica		47.88 (kg/m s)(lb s/pie ²)	10^{-1} (kg/m s)/poise
		10^{-3} (kg/m s)/cp	1 (kg/m s)/(kg/m s)
	Difusividad	$2.581 \times 10^{-5} \text{ (m}^2\text{s})(\text{pie}^2/\text{hr})$	$10^{-4} (m^2/s)/(cm^2/s)$
	Conductividad		
	térmica	1.731 (W/m K)/(Btu/hr pie°F)	418.7 (W/m K)/(cal/s cm °C)

^aCaloria I.T. (caloria de la Tabla de Vapor Internacional). También se usa la caloría tennoquímica, en la cual hay 4184 J/kcal.

Apéndice C: Gráficos

Lista de Figuras

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN © DIRECCIÓN GENERAL DE BIBLIOTECAS

Figura C.1 Regimenes de flujo por convección forzada y natural en un tubo.

(a) Regimenes de flujo mixto por convección forzada y natural en un tubo vertical; $10^{-2} < \Pr D/L < 1$. (b) Regímenes de flujo mixto por convección forzada y natural en un tubo horizontal; $10^{-2} < \Pr D/L < 1$ [37]. (Adaptado con autorización.)

