UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

FACULTAD DE CIENCIAS QUÍMICAS

ESTUDIO DE LA INTERACCIÓN DE METALES PESADOS (Pb, Cd, Zn Y Cr) EN SOLUCIÓN, EN EL PROCESO DE BIOSORCIÓN POR TRES TIPOS DE

BIOMASA.

Por

GLORIA LOURDES DIMAS RIVERA

Como requisito parcial para obtener el Grado de

MAESTRO EN CIENCIAS con Orientación en

Procesos Sustentables

Julio, 2011

ESTUDIO DE LA INTERACCIÓN DE METALES PESADOS (Pb, Cd, Zn Y Cr) EN SOLUCIÓN, EN EL PROCESO DE BIOSORCIÓN POR TRES TIPOS DE

Aprobación de la Tesis

Dr. Ma. Elena Rodríguez Cantú

Director de Tesis

Dra. Ma. Elena Cantú Cárdenas

Secretaria

Dra. Rosa del Carmen Miranda Guardiola

Vocal

Dra Ma. Teresa Garza González

Subdirectora de Estudios de Posgrado

RESUMEN

Gloria Lourdes Dimas Rivera

Fecha de Graduación: Agosto, 2011

Universidad Autónoma de Nuevo León Facultad de Ciencias Químicas

Titulo del Estudio: Estudio de la interacción de metales pesados (Pb, Cd, Zn y Cr) en solución, en el proceso de biosorción por tres tipos de biomasa.

Número de Páginas: 90

Candidato para el grado de Maestría en Ciencias con Orientación en Procesos Sustentables

Área de estudio: Procesos Sustentables

- **Propósito y Método de Estudio:** En la actualidad existe una problemática de contaminación con metales pesados. Las biomasas de levadura residual de cervecería, la levadura de panadería y el alga *Caulerpa sp.* pueden remover metales pesados como Pb. Cd, Cr y Zn de soluciones sintéticas. Evaluando la capacidad de adsorción y determinando los mecanismos de biosorción de cada biomasa se puede calificar como un biosorbente para remediación de aguas contaminadas.
- **Contribuciones y Conclusiones:** Se evaluó exitosamente las capacidades de adsorción de cada ion metálico con las biomasas de levadura residual de cerveza, levadura de panadería y el alga *Caulerpa sp.*, encontrándose que el Pb²⁺ y Cr³⁺ se adsorben en mayor proporción que el Cd²⁺ y Zn²⁺. El orden de capacidad de adsorción de las biomasas es el siguiente: levadura residual de cervecería > *Caulerpa sp.* >levadura de panadería. Los grupos funcionales que participan el proceso de biosorción de la levadura residual de cervecería y de la levadura de panadería son los grupos carboxílicos, aminos y fosfatos, para la *Caulerpa sp.* son los carboxilos, aminos, sulfonatos y silicatos. El mecanismo que predomina en el proceso de biosorción para las tres biomasas es el intercambio iónico.

FIRMA DEL ASESOR:

Dra. Ma. Elena Rodríguez Cantú

TABLA DE CONTENIDO

Capítulo Página			
1.	INTF	RODUCCIÓN	1
	1.1 1.2	Métales Pesados Métodos convencionales utilizados en el tratamiento de aguas	4
	1.3	Métodos no convencionales utilizados en el tratamiento de aguas	၁
	1.4	contaminadas Tipos de biomasa utilizadas	8 11
		1.4.1 Levadura como biomasa1.4.2 Algas verdes como biomasa	12 14
	1.5 1.6	Mecanismo del proceso de biosorción Isotermas de Adsorción	15 16
	1.7	1.6.1 Isoterma de Langmuir Cineticas de adsorción	17 17
2.	HIP	ÓTESIS, OBJETIVOS Y APORTACIONES	19
	2.1	Hipótesis	19
	2.2	Objetivo General	19
	2.3 2.4	Aportaciones	20 21
3.	MAT	ERIALES Y MÉTODOS	22
	3.1	Metodología General	22
	3.2	Metodología Particular	24
		3.2.1 Preparación de soluciones	24 24
		3.2.3 Calibración del equipo de Absorción Atómica	25
		3.2.3.1 Fundamento de la Técnica de Absorción Atómica (EAA).	25
		3.2.3.2 Curva de Calibración	25
		3.2.4 Isotermas de Adsorción	26
		3.2.4.1 Sistemas sencillos	20
		3 2 5 Simulación de una mezcla de iones multimetálicos	28
		3.2.6 Cinética de Adsorción	28
		3.2.7 Caracterización de la biomasa	29
		3.2.7.1 Espectroscopía Infrarroja con Transformadas de Fourier.3.2.7.2 Caracterización por Microscopía Electrónica de Barrido	29
		(SEM) y Energía Dispersiva de Rayos X (EDS)	30
		3.2.8 Manejo de residuos	32

TABLA DE CONTENIDO

Capítulo

Página

4.	RES	SULTA	DOS Y DISCUSIÓN	33
	4.1	Isote	rmas de Adsorción	33
		4.1.1	Isotermas sencillas	33
			4.1.1.1 Levadura residual de cerveza	33
			4.1.1.2 Levadura de pan	35
			4.1.1.3 Alga Caulerpa sp	37
			4.1.1.4 Comparación de las biomasas	39
		4.1.2	Sistemas multimetálicos	42
			4.1.2.1 Levadura residual de cerveza	42
			4.1.2.2 Levadura de pan	44
			4.1.2.3 Caulerpa sp.	45
	4.2	Simu	Ilación de una muestra real	46
	4.3	Ciné	ticas de biosorción	48
		4.3.1	Levadura residual de cerveza	48
			4.3.1.1 Plomo	48
			4.3.1.2 Cadmio	50
			4.3.1.3 Cromo	52
			4.3.1.4 Zinc	54
		4.3.2	Levadura de pan	56
			4.3.2.1 Plomo	56
			4.3.2.2 Cadmio	58
			4.3.2.3 Cromo	59
			4.3.2.4 Zinc	61
		4.3.3	Caulerpa sp	63
			4.3.3.1 Plomo	63
			4.3.3.2 Cadmio	64
			4.3.3.3 Cromo	66
			4.3.3.4 Zinc	68
	4.4	Cara	cterización de la biomasa	70
		4.4.1	FT-IR	70
			4.4.1.1 Levadura residual de cerveza	70
			4.4.1.2 Levadura de pan	71
			4.3.1.3 Alga Caulerpa sp.	72
		4.4.2	SEM-EDS	74
			4.4.2.1 Levadura de pan Saccharomyces cerevisiae (no activ	va)74
			4.4.2.2 SEM del Alga Caulerpa sp.	
5.	CO	NCLUS	SIONES	84
6.	RE	ERE	NCIAS	87

LISTA DE TABLAS

Tabla

Página

I.	Algunos metales pesados, sus fuentes principales y sus efectos en la salud humana
II.	Ventajas y desventajas de la fitorremediación9
III.	Ventajas y desventajas de la biosorción 10
IV.	Comparación entre el proceso de biosorción y biocumulación 11
V.	Ventajas de Saccharomyces cerevisiae como biosorbente 14
VI.	Concentraciòn inicial Pb ²⁺ , Cd ²⁺ , Zn ²⁺ y Cr ³⁺ en solución en sistemas multiples
VII.	Constantes de langmuir de la biosorciòn de Pb ²⁺ , Cd ²⁺ , Zn ²⁺ y Cr ³⁺ por levadura residual de cerveza
VIII	.Constantes de langmuir de la biosorciòn de Pb ²⁺ , Cd ²⁺ , Zn ²⁺ y Cr ³⁺ por levadura de pan
IX.	Constantes de langmuir de la biosorciòn de Pb ²⁺ , Cd ²⁺ , Zn ²⁺ y Cr ³⁺ por <i>Caulerpa sp.</i>
Х.	Concentraciones iniciales y valores de <i>q</i> en sistemas multimetàlico por elevadura residual de creveza
XI.	Constantes de propiedades de Pb ²⁺ , Cd ²⁺ , Cr ³⁺ y Zn ²⁺ 44
XII.	Concentraciones iniciales y valores de <i>q</i> en sistema multimetálico por elevadura de pan
XIII	Concentraciones iniciales y valores de q en sitema multimetálico por <i>Cauerpa sp.</i>
XIV	V. Valores de <i>q</i> (mg/g) para los iones metálicos Pb ²⁺ , Cd ²⁺ , Cr ³⁺ y Zn ²⁺ en la mezcla simulada con levadura residual de cerveza, levadura de pan y <i>Caulerpa sp.</i>

Página

XV.Parámetros cinéticos y coeficientes de correlación para la biosorción de Pb ²⁺ por elevadura residual de cerveza
XVI.Parámetros cinéticos y coeficientes de correlación para la biosorción de Cd ²⁺ por elevadura residual de cerveza
XVII.Parámetros cinético y coeficientes de correlación para la biosorción de Cr ³⁺ por elevadura residual de cerveza
XVIII.Parámetros cinéticos y coeficiente de correlación para la biosorción de Zn ²⁺ por elevadura residual de de cerveza
XIX.Parámetros cinéticos y coeficiente de correlación para la biosorción de Pb ²⁺ por elevadura de pan
XX.Parámetros cinéticos y coeficiente de correlación para la biosorción de Cd ²⁺ por elevadura de pan
XXI. Parámetros cinéticos y coeficiente de correlación para la biosorción de Cr ³⁺ por elevadura de pan
XXII. Parámetros cinéticos y coeficiente de correlación para la biosorción de Zn ²⁺ por elevadura de pan
 XXIII. Parámetros cinéticos y coeficiente de correlación para la biosorción de Pb²⁺ por <i>Caulerpa sp.</i>
 XXIV. Parámetros cinéticos y coeficiente de correlación para la biosorción de Cd²⁺ por <i>Caulerpa sp.</i>
 XXV. Parámetros cinéticos y coeficiente de correlación para la biosorción de Cr³⁺ por <i>Caulerpa sp.</i>
 XXVI. Parámetros cinéticos y coeficiente de correlación para la biosorción de Zn²⁺ por <i>Caulerpa sp.</i>
XXVII. Análisis elemental de rayos X por energía dispersiva de la Levadura de pan viva (no activa) sin metal
XXVIII.Análisis elemental de rayos X por energía dispersiva de la levadura de pan despues del proceso de biosorción con los iones Cr ³⁺ , Pb ²⁺ y Cd ²⁺

Tabla

XXIX. Análisis elem	ental de rayos X por en	ergía dispersiva de Caule	erpa sp.
XXII. Análisis eleme	ntal de rayos X por en	ergía dispersiva de Caule	erpa sp.
después del pro	ceso de biosorción		82

LISTA DE FIGURAS

Figura

Página

1.	Metodología General para la evaluación de la interacción de iones metálicos Pb ²⁺ , Cd ²⁺ , Zn ²⁺ y Cr ³⁺ en el proceso de biosorción
2.	Señales provocadas por el haz de electrones en el equipo de SEM 31
3.	Isotermas de adsorción de Pb ²⁺ , Cd ²⁺ , Cr ³⁺ y Zn ²⁺ por biomasa de levadura residual de cerveza
4.	Isotermas de adsorción de Pb ²⁺ , Cd ²⁺ , Cr ³⁺ y Zn ²⁺ por biomasa de levadura de pan
5.	Isotermas de adsorción de Pb ²⁺ , Cd ²⁺ , Cr ³⁺ y Zn ²⁺ por biomasa de <i>Caulerpa sp.</i>
6.	Isotermas de adsorción de Pb ²⁺ , Cd ²⁺ , Cr ³⁺ y Zn ²⁺ en comparación de las tres biomasas
7.	Gráfica comparativa de los valores de q de los iones Pb ²⁺ , Cd ²⁺ , Cr ³⁺ y Zn ²⁺ en una mexcla simulada con las biomasas: levadura residual de cerveza, levadura de pan y <i>Caulerpaa sp</i> 46
8.	Cinética de adsorción de Pb ²⁺ por levadura residual de cerveza a diferentes concentraciones
9.	Cinética de adsorción de Cd ²⁺ por levadura residual de cerveza a diferentes concentraciones
10.	Cinética de adsorción de Cr ³⁺ por levadura residual de cerveza a diferentes concentraciones
11.	Cinética de adsorción de Zn ²⁺ por levadura residual de cerveza a diferentes concentraciones
12.	Cinética de adsorción de Pb ²⁺ por levadura de pan a diferentes concentraciones
13.	Cinética de adsorción de Cd ²⁺ por levadura de pan a diferentes concentraciones

Figura

Página

14. Cinética de adsorción de Cr ³⁺ por levadura de pan a diferentes concentraciones
15. Cinética de adsorción de Zn ²⁺ por levadura de pan a diferentes concentraciones
 Cinética de adsorción de Pb²⁺ por alga Caulerpa sp. a diferentes concentraciones
17. Cinética de adsorción de Cd ²⁺ por alga <i>Caulerpa sp.</i> a diferentes concentraciones
 18. Cinética de adsorción de Cr³⁺ por alga Caulerpa sp. a diferentes concentraciones
19. Cinética de adsorción de Zn ²⁺ por alga <i>Caulerpa sp.</i> a diferentes concentraciones
20. Espectro de FTIR de levadurura residual de cerveza antes y después del proceso de biosorción
21. Espectro de FTIR de levadurura de pan antes y después del proceso de biosorción
22. Espectro de FTIR de <i>Caulerpa sp.</i> antes y después del proceso de biosorción
23. Espectro EDS de células de levadura de pan viva (no activa) sin metal
24. Micrografía electronica de barrido (SEM) por electrones retrodispersados de levadura de pan viva (no activa) sin metal
 25. Espectro EDS de levadura de pan despues del proceso de biosorción con iones a) Cr³⁺, b) Pb²⁺ y c) Zn²⁺
 Micrografía de SEM de levadura de pan despues del proceso de biosorción con iones Cr³⁺
27. Espectro EDS de <i>Caulerpa sp.</i> virgen
28. Micrografía electronica de barrido (SEM) de Caulerpa sp. virgen 79

Figura

29.	Microspía de SEM de <i>Caulerpa sp.</i> despues del proceso de biosorción con iones Cr ³⁺ , Pb ²⁺ y Cd ²⁺
30.	Espectro EDS de <i>Caulerpa sp.</i> despues del proceso de biosorción con iones Cr ³⁺ , Pb ²⁺ y Cd ²⁺
31.	Micrografía de SEM de <i>Caulerpa sp.</i> despues del proceso debiosorción con iones Cr ³⁺

NOMENCLATURA

А	Absorbancia
EAA	Espectrofotometría de absorción atómica
b	Constante de Langmuir
Bt	Biosorbente a un tiempo "t"
B _{t+1}	Biosorbente a un tiempo "t + 1"
Cd ²⁺	Ion cadmio
C _f	Concentración residual
-CH ₂	Radical metilo
cm	centímetros
C=O	Enlace doble carbón – oxigeno de un grupo carbonilo
C-0	Enlace carbón- oxigeno
Cr ³⁺	lon cromo trivalente
EDS	Energía Dispersiva de rayos-X
FT-IR	Espectroscopía Infrarroja con Transformadas de Fourier
g	Gramos
L	Litros
Log k	Logaritmo de la constante de estabilidad
mg	Miligramos
Ν	Nitrógeno
-(NH ₂)	Radical amino
0	Oxigeno
ОН	Grupo hidroxilo
Pb ²⁺	lon plomo
-P-0	Radical del grupo fosfato
q	Capacidad de adsorción
q _{max}	Capacidad máxima de adsorción

R^2	Cuadrado del coeficiente de correlación
S	Azufre
SEM	Microscopía Electrónica de Barrido
sp	Sin especie
t	Tiempo
Xm	Electronegativa
X ² mr	Índice covalente
Zn ²⁺	lon zinc
λ_t	Números de sitios efectivos

CAPÍTULO 1

INTRODUCCIÓN

Hoy en día la contaminación del medio ambiente por metales pesados es una preocupación creciente debido al riesgo en la salud por la exposición de éstos con los seres humanos y los animales. (Chen Shiguo, 2009). Los metales suelen ser acumulativos, la ingesta repetida de pequeñas cantidades determina al cabo del tiempo altas concentraciones de metales en los tejidos de los organismos. En la mayoría de las ocasiones, las aguas contaminadas suelen terminar en el mar y gran cantidad de peces de consumo humano se convierten en agentes tóxicos. Este problema de contaminación se debe a la rápida industrialización y urbanización (Park Donghee, 2010) que provocan grandes desechos acuosos tóxicos por ejemplo: los efluentes de plantas de galvanizado, metalurgia y tratamiento de acabado de metales contienen grandes concentraciones de metales disueltos (Chen Shiguo, 2009), que se descargan

en ríos y lagos. En la tabla I se mencionan algunas fuentes de contaminación por metales pesados y sus efectos en la salud de los seres humanos.

En México, como consecuencia del desarrollo industrial, se registra una creciente y preocupante contaminación ambiental. Las fuentes de contaminación por metales pesados más importantes en el país son la industria minera, la metal-mecánica y de pinturas.

- La industria minera es una de las actividades económicas de mayor tradición, la cual se centra en la extracción de metales y se dedica principalmente a la producción de Cu, Zn, Ag y Pb. Esta actividad tiene un alto impacto ambiental, ya que afecta desde el subsuelo hasta la atmósfera, incluyendo suelos y cuerpos de agua. Debido al procesamiento de los recursos minerales, se han generado grandes cantidades de residuos sólidos, líquidos y gaseosos que han favorecido la aparición de una gran cantidad de sitios contaminados a lo largo de todo el país (Monge O *et al.*, 2008).
- En la industria metal mecánica sus principales problemas medioambientales son los altos consumos de agua y electricidad y la generación de altos volúmenes de efluentes y lodos de la depuración de las aguas residuales de proceso.

La contaminación de las aguas se debe fundamentalmente al vaciado de los baños de proceso y a las funciones de enjuague de las piezas. Esto origina una serie de subproductos que deben ser evacuados del ciclo productivo, por lo que constituyen un desecho.

La industria de la pintura utiliza pigmentos inorgánicos y orgánicos para la realización de sus productos, entre los pigmentos inorgánicos se encuentran cromato de plomo, óxido de cromo y sulfuro de cadmio. Por lo que los efluentes de este tipo de industria contienen gran cantidad de metales de plomo, cadmio y cromo.

Tabla I. Algunos metales pesados, sus fuentes principales y sus efectos en la salud humana (Alluri 2007, Parvathi 2007 & Navneet 2003).

Metal	Fuentes primordiales	Efectos en la salud humana
Arsénico	Pesticidas, fungicidas, fundición de	Bronquitis, dermatitis, cáncer.
	metales.	
Cadmio	Soldadura, galvanoplastia, pesticidas,	Daño renal, bronquitis, desórdenes
	fertilizantes, baterías de CdNi, planta de	gastrointestinales, cáncer.
	fisión nuclear.	
Cromo	Pinturas, galvanoplastia, acabado de	Cáncer, enfermedades pulmonares,
	metales, bronceadores, metal-	lesiones en la piel.
	mecánica, procesos de cromado,	
	biocidas.	
Manganeso	Soldadura, adición de combustible,	La inhalación ó el contacto causan
	producción de ferromanganeso.	daño a sistema nervioso central.
Mercurio	Pesticidas, baterías, industria del papel.	Irritación de la nariz, la boca y los
		ojos, dolores de cabeza, mareos,
		náuseas y diarrea, daño al hígado y
		los riñones e incluso la muerte.
Plomo	Pinturas, pesticidas, emisiones de	Daños a hígado, riñón,
	automóviles, minería, quemado de	gastrointestinales, retraso mental
	carbón	en los niños, anemia, desorden
		gastrointestinal.
Zinc	Refinerías, manufactura de latón,	Efecto corrosivo en la piel, nauseas
	recubrimiento de metales, plomería	y vomito.

1.1 Metales Pesados

El término general de metales pesados se asigna a los elementos metálicos y metaloides con una densidad atómica arriba de 5g/m³ siendo tóxicos o venenosos a bajas concentraciones. Entre los metales pesados se encuentran el cromo (Cr), manganeso (Mn), hierro (Fe), cobalto (Co), cobre (Cu), zinc (Zn), molibdeno (Mo), plata (Ag), mercurio (Hg), cadmio (Cd), níquel (Ni), estaño (Sn), plomo (Pb), antimonio (Sb), bismuto (Bi), y el selenio (Se) (Ying, 2007).

El plomo es un metal altamente tóxico que causa daño neurológico en los seres humanos; el principal vehículo de transporte del plomo desde los intestinos a varios tejidos celulares son los glóbulos rojos, pasando al hígado y riñones. Por su toxicidad, el plomo inhibe la acción enzimática, y se puede fijar en la sangre, en los huesos, etc., esto se debe a que el plomo desplaza al calcio por tener radios atómicos parecidos y porque el plomo tiene mayor afinidad por estos grupos funcionales, también produce alteración de la membrana celular (Muñoz *et al*, 2007).

El cromo es considerado como metal tóxico y sin embargo es un microelemento para el cuerpo humano. El cromo hexavalente es más tóxico que el cromo trivalente. El cromo tiene un uso considerable en electroplacas, en bronceadores y como biocida en plantas de agua fría, resultando efluentes con un alto contenido de cromo (Michalak Izabela, 2007).

El Cr (III) es un importante producto final en la reducción del cromo hexavalente por el metabisulfito en electroplacas e industrias similares. Este prevalece más que la forma hexavalente y una exposición a largo plazo causa reacciones alérgicas en la piel y cáncer. (Ferraz A.I., 2004).

Los metales zinc y cadmio han sido siempre vinculados, debido a su fuente natural. La extracción de zinc arrastra generalmente menas de cadmio que son encontradas como impurezas constituyendo una fuente de contaminación de ambos metales. El zinc no es altamente tóxico, sin embargo se han encontrado efectos adversos en la morfología de peces expuestos a concentraciones de zinc por encima de los valores recomendados así como efectos carcinogénicos en humanos que han consumido grandes cantidades de zinc. La toxicidad del cadmio es conocida por la destrucción de sitios enzimáticos activos y alteraciones del sistema nervioso en seres humanos, incluso a bajas concentraciones (Navarro A. *et al*, 2006).

1.2 Métodos convencionales utilizados en el tratamiento de aguas contaminadas

Actualmente existen técnicas tradicionales al tratamiento de aguas provenientes de efluentes industriales y mineros, con el fin de minimizar el impacto de la contaminación ambiental por metales pesados.

Entre las técnicas de tratamiento de aguas se encuentran las siguientes (Rodríguez *et al*, 2006) (Muñoz & Carrillo, 2007):

- a) Precipitación química: Consiste en la eliminación de una sustancia disuelta indeseable, por la adición de un reactivo apropiado, facilitando así su eliminación por métodos de separación de materia suspendida como la filtración ó la coagulación-floculación.
- b) Procesos Electroquímicos: Está basado en la utilización de técnicas electroquímicas, haciendo pasar una corriente eléctrica a través del agua (que necesariamente ha de contener un electrolito) y provocando reacciones de oxidación-reducción tanto en el cátodo como en el ánodo. Por tanto, se utiliza energía eléctrica como vector de descontaminación ambiental, siendo su coste uno de las principales desventajas de este proceso. Sin embargo, como ventajas cabe destacar la versatilidad de los equipos, la ausencia tanto de la utilización de reactivos como de la presencia de fangos y la selectividad, pues controlar el potencial de electrodo permite seleccionar la reacción electroquímica dominante deseada.
- c) Osmosis inversa: Consiste en pasar un efluente por membranas semipermeables, para separar y quitar los sólidos disueltos, los orgánicos, los pirogénicos, la materia coloidal submicro, organismos, virus y bacterias del agua. La ósmosis inversa es capaz de remover hasta el 99.5 % de la contaminación.

- d) Ultrafiltración: es una operación de separación que comparte características de una filtración normal y de la ósmosis inversa. Consiste en la remoción de partículas coloidales y dispersas de un líquido que consiste en hacer pasar el mismo a través de una membrana aplicando alta presión.
- e) Intercambio iónico: Proceso por el cual ciertos iones no deseados son cambiados por otros iones, que están unidos a las partículas de una resina; normalmente los iones hidrógeno de la resina, se cambian por los cationes y los iones hidroxilo de la resina se cambian por los aniones. Los iones hidrógeno e hidroxilo se combinan, formando agua pura.
- f) Adsorción: El proceso de adsorción consiste en la captación de sustancias solubles en la superficie de un sólido. Un parámetro fundamental es este caso será la superficie específica del sólido, dado que el compuesto soluble a eliminar se ha de concentrar en la superficie del mismo. La necesidad de una mayor calidad del agua está haciendo que este tratamiento esté en auge. Es considerado como un tratamiento de refino, y por lo tanto al final de los sistemas de tratamientos más usuales, especialmente con posterioridad a un tratamiento biológico.

1.3 Métodos no convencionales utilizados en el tratamiento de aguas contaminadas.

Los métodos convencionales generan gran cantidad de residuos y su costo es muy alto, especialmente cuando se aplican en ambientes con concentraciones de metales por debajo de 100 mgL⁻¹ (Garza & Coto, 2005). Estos problemas han llevado a desarrollar alternativas ecológicas y económicas, las cuales, además de aprovechar y aplicar los procesos naturales que ocurren en un ecosistema para depurar un residuo contaminante, ofrecen la posibilidad de recuperar los recursos presentes en el mismo para su posterior utilización, generándose además, un valor económico que contribuye a la sostenibilidad del sistema (Muñoz & Carrillo, 2007).

Entre las técnicas biológicas se encuentran:

Fitorremediación: Es el uso de plantas para limpiar ambientes contaminados como aire, suelo y agua. Constituye una estrategia muy interesante, debido a la capacidad que tienen algunas especies vegetales de absorber, acumular y/o tolerar altas concentraciones de contaminantes como metales pesados, compuestos orgánicos y radioactivos. En la tabla II se tienen algunas ventajas y desventajas de esta técnica frente a los otros tipos de biorremediación (Muñoz & Carrillo, 2007) (Evans & Furlong, 2003).

	Ventajas		Desventajas
•	Las plantas pueden ser utilizadas para	•	El proceso se limita a la profundidad de
	remediar suelos y aguas contaminadas		penetración de las raíces o aguas poco
	a un bajo costo.		profundas.
•	Algunos procesos degradativos ocurren	•	Los tiempos del proceso pueden ser
	en forma más rápida con plantas que		muy prolongados.
	con microorganismos.		
•	Es un método apropiado para	•	La biodisponibilidad de los compuestos
	descontaminar superficies grandes o		o metales es un factor limitante de la
	para finalizar la descontaminación de		captación.
	áreas restringidas en plazos largos.		

Tabla II. Ventajas y desventajas de la Fitorremediación (Evans & Furlong, 2003).

Biosorción: Es un proceso pasivo de unión de cationes a biomasa muerta o viva (Ying, 2007), debido a la existencia de fuerzas no compensadas en la superficie de ésta (Muñoz & Tapia, 2007), y es particularmente útil para la eliminación de contaminantes de los efluentes industriales (Alluri, H. K.; et al, 2007). En la tabla III se muestran algunas ventajas de la biosorción.

Ventajas	Desventajas
 La minimización del volumen de productos químicos y/o lodos biológicos. 	 Rápida saturación de los sitios de unión.
 El material biosorbente se puede regenerar. 	 El secuestro por adsorción es sensible al pH.
 La remoción de los iones de metales se realiza a bajas concentraciones. 	 El mejoramiento de estos procesos biológicos es limitado ya que las células no efectúan un metabolismo.
 El proceso no se encuentra gobernado por restricciones fisiológicas, es decir no depende del crecimiento. 	 El estado de valencia del metal no puede ser alterado biológicamente para dar formas menos solubles. No existe capacidad para degradar conscion presentationes.
 No se requieren nutrientes para el proceso. 	especies organometalicas.
 Los materiales utilizados como biosorbentes no son caros 	
 Bajo costo de operación 	
 Proceso sencillo 	

Tabla III. Ventajas y desventajas de la biosorción (Basha, 2008) (Chojnack, 2010) (Cañizares, 2000).

Bioacumulación: Se basa en la absorción de las especies metálicas mediante procesos metabólicos de células de biomasas vivas. La bioacumulación ocurre en dos etapas, en la primera etapa se lleva a cabo la biosorción que es un proceso rápido y en la segunda etapa ocurre el transporte de sorbato (en este caso la especie metálica) en el interior de la célula siendo un proceso lento.

Este proceso es más complejo que la biosorción y requiere actividad metabólica de la célula, es decir, cultivar el microorganismo en presencia del sorbato (Chojnack, 2010). En la tabla IV se muestra una comparación de la biosorción y la bioacumulación.

Biosorción	Bioacumulación
 Proceso pasivo 	 Proceso activo
 Biomasa no viva o inactiva 	 Biomasa viva
 Los metales son enlazados en la 	 Los metales pueden ser enlazados
superficie de la célula	en la superficie de la célula y en su interior
 Proceso de adsorción 	 Proceso de absorción
 Proceso reversible 	 Proceso parcialmente reversible
 No se requiere nutrientes 	 Se requiere nutrientes
 Ocurre en una sola etapa 	 Ocurre en dos etapas
 Proceso rápido 	 Proceso lento
 No es controlado por el metabolismo 	 Es controlado por el metabolismo
 No hay peligro de efectos tóxicos 	 Pueden existir efectos tóxicos causados por contaminantes
 No hay crecimientos celular 	 Ocurre crecimiento celular
 Concentración de equilibrio intermedio 	 Equilibrio a muy bajas concentración
de iones de metales	de iones metálicos

Tabla IV. Comparación entre el proceso de Biosorción y bioacumulación (Chojnack, 2010).

1.4 Tipos de biomasa utilizadas

En los siglos XVIII y XIX se empezó a estudiar la remoción de metales utilizando como biomasas microorganismos vivos, pero sólo en las últimas tres décadas se han utilizado microorganismos vivos y no vivos como adsorbentes de metales de soluciones acuosas. Las primeras aplicaciones de la técnica de biosorción involucraron tratamiento de agua residual. (Park *et al*, 2010).

En el primer estudio cuantitativo de la biosorción de metales realizado por L. Hecke en 1902 (Park *et al*, 2010), se utilizaron esporas de *T. tritici* y *U. crameri como biomasa* y Volesky en 1982 patentó la técnica de biosorción para remover uranio con biomasa de células de *Rhizopus arrhizus* (Volesky, B. and Tsezos, 1982) (Park *et al*, 2010).

Con el tiempo se ha estudiado el proceso de biosorción con diferentes tipos de biosorbentes, entre los cuales se encuentran; algas marinas (*Sargassum natans*, *Caulerpa sp.*), bacterias (*Bacillus subtilis*), hongos (*Rhizopus arrhizus*), levaduras (*S. cerevisiae*), los residuos microbianos de la fermentación alcohólica de la industria alimentaria (levadura residual de cerveza) así como residuos agroindustriales (cáscara de toronja) (Saikaew W. *et al*, 2009).

Por razones económicas, los investigadores han prestado mucha atención a varios de los subproductos de la industria de la fermentación alcohólica, debido a que se producen en grandes cantidades. La aplicación de estos residuos como biosorbentes para la biosorción de metales pesados tiene dos beneficios: las empresas pueden vender sus residuos y biomasa para ganar dinero, al mismo tiempo que se pueden ahorrar los costos asociados con la eliminación de los residuos de biomasa que se produce.

1.4.1 Levaduras como biomasa.

El 80 o 90% de la materia seca de la pared celular de los hongos son polisacáridos, que se componen de aminoazúcares, hexosas, ácido hexurónico, metilpentosas y pentosas (Farkas V., 1979). La pared celular de las levaduras está compuesta principalmente de β (1-3) glucano, β (1-6) glucano, manoproteínas y quitina (Kollar *et al*, 1997). La quitina está compuesta de monómeros de la N-acetil-D-glucosamina (Farkas V., 1979), la cual crea un complejo con el β (1-3) glucano, formando una red fibrosa que le confiere rigidez y resistencia mecánica a la pared celular. Este complejo es el principal

componente de la pared interna. Los componentes que están dentro y fuera de la pared se unen por medio del β (1-6) glucano. La superficie externa de la pared está compuesta de manoproteínas las cuales son importantes para la impermeabilidad de la pared celular (Lipke and Ovalle, 1998).

Naeem en el 2006 utilizó la levadura *Sacchoromyces cerevisiae* para adsorber metales y observó la siguiente afinidad de adsorción: Pb>Zn>Cd>Sr. Este investigador sugirió que *S. cerevisiae* representa un biosorbente original y adecuado para la remoción de metales pesados en soluciones acuosas de efluentes (Naeem, J. R.; *et al*, 2006).

El pH juega un papel importante en la biosorción por lo cual se ha estudiado el efecto del pH en la remoción de metales utilizando *S. cerevisiae*, tal es el caso de Hadi en el 2003 que reportó un pH óptimo de 5 para remover cadmio (Hadi, B; *et al*, 2003).

S. cerevisiae es ampliamente utilizada en la industria alimentaria (Wang J., 2002) y se genera una gran cantidad de residuos de esta levadura, siendo una biomasa viable para el proceso de biosorción. En la Tabla IV se consideran las ventajas para utilizar *S. cerevisiae* como biosorbente en biosorción de metales. (Wang, 2002).

Tabla V. Ventajas de Saccharomyces cerevisiae como biosorbente (Wang & Chen, 2006). Ventajas de Saccharomyces cerevisiae

- S. cerevisiae es fácil de cultivar a gran escala. La levadura puede crecer fácilmente utilizando sofisticadas técnicas de fermentación y en medios de crecimiento económico. El rendimiento de la biomasa es alto.
- ✓ La biomasa de S. cerevisiae, se puede obtener fácilmente como subproducto de la industria de la fermentación de distintos alimentos y bebidas. En comparación con otros tipos de residuos, el suministro de S. cerevisiae es básicamente estable.
- ✓ S. cerevisiae es generalmente considerado como seguro. Por lo tanto, biosorbentes a partir de esta levadura pueden ser fácilmente aceptados por el público cuando se aplican prácticamente.
- S. cerevisiae, es un organismo modelo para identificar el mecanismo de biosorción en la eliminación de iones metálicos, especialmente para investigar las interacciones de los metales a nivel molecular.

1.4.2 Algas verdes como biosorbentes

Otra alternativa son las algas verdes (*Chorophyta*) que debido a las propiedades de su pared celular (compuesta principalmente de celulosa, xilosa, manosa y quitina) pueden enlazar metales tanto por atracción electrostática como por formación de complejos (Davis T., et al, 2003).

Los metales pesados pueden unirse a esta alga a través de grupos funcionales presentes en la pared celular como: amino, amido, carboxilo, sulfonato y sulfhidrilo.

El alga verde *Caulerpa sp.* es una buena opción para biosorber metales ya que este organismo es muy abundante. En algunas partes existe invasión de esta alga, por ejemplo la especie *Caulerpa racemosa* es originalmente nativa del mar rojo, pero ha colonizado las costas mediterráneas durante varias décadas (Rivera-Ingraham G. A., 2009).

De la misma forma, la especie *Caulerpa mexicana* ha colonizado en poco tiempo las costas mediterráneas de Turquía, y en las últimas cuatro décadas en el Atlántico mexicano se han inventariado dieciséis especies, diez variedades, nueve formas y otras nueve combinaciones. Del mismo modo, para el Pacífico mexicano se han inventariado, durante casi seis décadas nueve especies, siete variedades y cuatro formas de *Caulerpa*.

1.5 Mecanismo del proceso de Biosorción.

El proceso de biosorción involucra una fase sólida (sorbente o biosorbente, por lo general un material biológico) y una fase líquida (disolvente, normalmente agua) que contiene una especie a adsorber (sorbato, un ion de metal) (Alluri, H. K.; et al, 2007). Debido a la gran afinidad del sorbente por el sorbato, este último es atraído hacia el sólido y enlazado por diferentes mecanismos. Este proceso continúa hasta que se establece un equilibrio entre

el sorbato disuelto y el sorbato enlazado al sólido (a una concentración final o en el equilibrio). La afinidad del sorbente por el sorbato determina su distribución entre las fases sólida y líquida. La cantidad de sorbente está dada por la cantidad de sorbato que puede atraer y retener en forma inmovilizada. Esto se lleva a cabo a través de distintos procesos físico-químicos, siendo el intercambio catiónico el principal mecanismo de biosorción (Ahalya, 2005).

Los grupos activos presentes en las paredes celulares son los grupos carbonilo hidroxilo, carboxilo, sulfhidrilo, tioeter, sulfonato, amina, imina, amida, imidazol, fosfonato, fosfodiéster; capaces de unirse a los metales contaminantes (Regine et al., 2000) (Alluri, H. K.; et al, 2007).

1.6 Isotermas de Adsorción

Las isotermas de adsorción son modelos matemáticos que se utilizan para describir los datos experimentales (Muñoz & Carrillo, 2007). Para describir el fenómeno de biosorción los modelos más utilizados en sistemas sencillos son el modelo de Langmuir y Freundlich. En este estudio se utilizó el modelo de Langmuir.

1.6.1 Isoterma de Langmuir

Langmuir teóricamente examinó la adsorción de gases sobre superficies sólidas, y consideró la adsorción como un fenómeno químico. Básicamente, la ecuación de la isoterma de Langmuir tiene una forma hiperbólica:

$$q_c = \frac{q_{\max}bC_c}{1+bC_c}$$

Ec. 1.

donde q_{max} (expresado en unidades de mmol/g) y **b** (expresado en unidades de L/mmol) son constantes que reflejan, respectivamente, la capacidad de adsorción máxima para un metal y la afinidad entre el ion metálico y el biosorbente.

1.7 Cinéticas de adsorción

En el proceso de biosorción es importante conocer la velocidad a la cual se lleva a cabo, así como el tiempo de residencia del adsorbato y las dimensiones del reactor que están controladas por la cinética del sistema. Los modelos cinéticos describen el proceso desde el inicio del contacto soluto adsorbente hasta el tiempo en que se alcanza el equilibrio. Los modelos basados en la capacidad de adsorción son nombrados modelos de pseudo primer orden y pseudo segundo orden.

Se considera que el paso controlante de la reacción de biosorción se lleva en la superficie del biosorbente. La concentración del adsorbato en la

solución va cambiando con el paso del tiempo, como también cambia el número de sitios de adsorción efectivos del biosorbente. En la ec. 2 se muestra el cambio del biosorbente con el paso del tiempo.

$$B_r \rightarrow B_{r+1}$$

en la cual B_t y B_{t+1} representan los estados respectivos del biosorbente al tiempo t y t+1. El número de sitios de adsorción efectivos λ_t en la superficie del biosorbente, disponibles para biosorción al tiempo t se pueden cuantificar de la siguiente forma:

$$\lambda_t = 1 - \frac{q_t}{q_e}$$

Ec. 3.

Ec. 2

Al inicio del proceso λ_t = 1 el cual tiende a disminuir durante la biosorción hasta que la reacción llega al equilibrio donde λ_t podría llegar a cero. Si se aplica la ley de velocidad de reacción a la ec. 3 se obtiene:

$$-\frac{d\lambda_x}{dt} = K_x \lambda_y^x$$

Ec. 4

en la cual Kx es la constante de velocidad con una unidad de tiempo inversa y x es el orden de reacción con relación a la concentración efectiva de los sitios disponibles sobre la superficie del biosorbente. La Ec. 4 es el resultado de la aplicación de la ley de velocidad universal para un proceso de biosorción, y puede ser usada sin consideraciones adicionales.

CAPITULO 2

HIPÓTESIS, OBJETIVO, OBJETIVOS ESPECIFICOS Y APORTACIONES

2.1 Hipótesis

Las interacciones entre iones de metales pesados (Pb²⁺, Cd²⁺, Zn²⁺ y Cr³⁺) en solución en el proceso de biosorción con diferentes biomasas (*Saccharomyces cerevisiae*, levadura residual de cerveza, y el alga verde *Caulerpa sp*) son determinadas mediante el estudio y análisis de sus isotermas de Langmuir, cinéticas, FT-IR y SEM-EDX.

2.2 Objetivo General

Evaluar la interacción de los iones metálicos Pb^{2+} , Cd^{2+} , Zn^{2+} y Cr^{3+} en soluciones diluidas en el proceso de biosorción por biomasa de levadura residual de cerveza, levadura de pan y el alga *Caulerpa sp.*

2.3 Objetivos Específicos

- Calcular las isotermas de adsorción para cada ion metálico mediante el modelo de Langmuir.
- Determinar la capacidad de biosorción de plomo, cadmio, zinc y cromo para cada biomasa en sistemas de iones metálicos sencillos y con sistemas de iones multimetal.
- Comparar la capacidad de biosorción de los biosorbentes en una mezcla simulada.
- Evaluar la capacidad de biosorción de: levadura residual de cerveza, levadura de pan y el alga *Caulerpa sp*.
- Obtener los parámetros cinéticos para: levadura residual de cerveza, levadura de pan y el alga *Caulerpa sp*.
- Caracterizar la biosorción simultánea de iones Pb²⁺, Cd²⁺, Zn²⁺ y Cr³⁺ para los tres biosorbentes, mediante las técnicas de SEM-EDX e FT-IR.

2.4 Aportaciones

En este trabajo se utilizarán tres tipos de biomasa, levadura residual de cerveza, levadura de pan (*Saccharomyces cerevisiae*) y el alga *Caulerpa sp.*, para la remoción de los metales Pb²⁺, Cd²⁺, Zn²⁺ y Cr³⁺. Estas biomasas presentan buenos resultados en la capacidad de adsorción, son económicas y fáciles de conseguir.

La principal aportación científica de este trabajo consiste en evaluar la capacidad de adsorción en sistemas sencillos y multimetálicos, con las tres biomasas, además de estudiar el comportamiento de reacción, tanto con un modelo cinético como con análisis de FTIR y SEM-EDX. Con los espectros de FTIR se determinarán los grupos funcionales que participan en el proceso de biosorción y con los resultados de las microscopías electrónicas de barrido SEM y el análisis elemental de Rayos X por energía dispersiva de SEM-EDX se confirmará la morfología de la superficie del biosorbente, se analizarán los elementos presentes y la localización del metal en la superficie del biosorbente. Estos estudios mostrarán la posible aplicación de estas biomasas para la remoción de metales pesados de efluentes industriales.

CAPITULO 3

MATERIALES Y METODOS

3.1 Metodología General

La evaluación de la interacción de los iones metálicos Pb²⁺, Cd²⁺, Zn²⁺ y Cr³⁺ en soluciones diluidas en el proceso de biosorción por biomasa de levadura residual de cerveza, levadura de pan y el alga *Caulerpa sp.* se llevó a cabo de acuerdo al resumen de la figura 1.

La metodología general consistió en los siguientes pasos: primero se prepararon soluciones, ocho en un rango de 10-200 ppm para cada metal y dieciséis combinaciones de mezcla de metales, por lo que se realizó la calibración del equipo de Absorción Atómica para determinar la concentración real de cada solución. Posteriormente se llevó a cabo la determinación de los equilibrios de adsorción para evaluar la capacidad de adsorción de cada biomasa en sistemas sencillos y multimetálicos, así como también las cinéticas de adsorción.

En seguida se realizó la caracterización de las interacciones metalbiomasa utilizando FT-IR y SEM -EDX. Por último, se determinó la capacidad de biosorción de una mezcla simulada en un reactor batch.

Figura 1. Metodología General para la evaluación de la interacción de iones metálicos Pb²⁺,

 Cd^{2+} , Zn^{2+} y Cr^{3+} en el proceso de biosorción.
3.2 Metodología Particular

3.2.1 Preparación de la biomasa

En este proyecto se utilizaron tres tipos de biomasa: la levadura residual de cerveza, levadura de pan y el alga *Caulerpa sp.*

- La levadura residual de cerveza es el subproducto del proceso de la fermentación de cerveza de una empresa local.
- La levadura de pan son células de Saccharomyces cerevisiae que se utilizan comúnmente para la elaboración de pan.
- El alga *Caulerpa sp.* fue recolectada de las playas de Mazatlán, Sinaloa, México.

En este estudio solo el alga *Caulerpa sp* fue lavada varias veces con agua desionizada y secada a 60°C por 24 h en estufa de secado Precision modelo Nid.

3.2.2 Preparación de Soluciones

Se preparó una solución stock de 10,000 mg/L de cada metal (Pb^{2+} , Cd^{2+} , Zn^{2+} y Cr^{3+}) a partir de sus nitratos. De este stock se realizaron, por medio de diluciones, soluciones de 10, 20, 50, 80, 100, 150, 180 y 200 mg/L para cada

metal. Las soluciones se ajustaron a un pH de 5 con NaOH y HNO_3 0.01 N utilizando un pHmetro Thermoelectron Corporation modelo Orion 420A+.

3.2.3 Calibración del Equipo de Absorción Atómica

3.2.3.1 Fundamento de la Técnica de Absorción Atómica (EAA).

Esta técnica consiste en introducir por aspiración una muestra en solución a una llama, la mayor parte de los componentes inorgánicos son vaporizados y convertidos en su forma elemental. El átomo es excitado por una fuente de radiación luminosa de una lámpara de cátodo hueco del elemento de interés.

La cuantificación de EAA se logra midiendo la cantidad de absorción de especies producidas en una determinada longitud de onda analítica. Los principios de la cuantificación de EAA se basan en la adhesión a la ley de Beer-Lambert, el aumento en la absorbancia tiene una relación lineal con la concentración de átomos en fase gaseosa.

3.2.3.2 Curva de calibración

La curva de calibración es la representación gráfica en un eje de coordenadas de la Absorbancia frente a la Concentración. Se trataron varias soluciones de concentración conocida y se determinaron sus absorbancias (A), en seguida se construyó la curva de calibración, que es una línea recta.

La curva de calibración se preparó con estándares a partir de un stock de 1000 mg/L de la marca AccuStandard para cada metal. Una vez obtenida la curva de calibración, se trataron las soluciones problemas, se midió la absorbancia y su concentración se determinó haciendo un ajuste de los datos por el método de mínimos cuadrados utilizando el coeficiente de correlación que fue estadísticamente significativo.

3.2.4 Isotermas de Adsorción.

3.2.4.1 Sistemas sencillos.

Para llevar a cabo el proceso de biosorción se colocaron 150 mL de solución, en las concentraciones mencionadas en la sección 3.2.1, en matraces Erlenmeyer de 250 mL (Pyrex®), enseguida se agregó la biomasa en una relación de 1g/L. Los matraces se agitaron a 150 rpm a 30°C por 6 h en Shaker Barnstead/Lab-line modelo Max^Q 5000.

Al término del proceso se tomaron muestras de 2 mL de la solución y la biomasa se separó en Microcentrifuga Thermoelectron modelo IEC-Microlite a 10000 rpm por 5 minutos. En el sobrenadante se determinó la concentración residual de los metales de estudio en el equipo de Espectroscopia de Absorción Atómica. Las determinaciones se analizaron por triplicado.

3.2.4.2 Sistemas múltiples

En un matraz de Erlenmeyer de 250 mL (Pyrex®) se colocaron 150 mL de solución de mezcla de metales de acuerdo a la tabla VI, enseguida se agregó la biomasa en una relación de 1g/L. Los matraces se agitaron a 150 rpm a 30°C por 6 h en Shaker Barnstead/Lab-line modelo Max^Q 5000.

Al término del proceso se tomaron muestras de 2 mL de la solución y la biomasa se separó en Microcentrifuga Thermoelectron modelo IEC-Microlite a 10000 rpm por 5 minutos. En el sobrenadante se determinó la concentración residual de los metales de estudio en el equipo de Espectroscopia de Absorción Atómica. Las determinaciones se analizaron por triplicado.

Biomasa	Leva	adura r	esidua	al de					Ale	- 0		
Mezcla		cerv	/eza		Le	vadura	a ue j	pan	Alg	a cau	ierpa	sp.
	Pb ²⁺	Cd ²⁺	Cr ³⁺	Zn ²⁺	Pb ²⁺	Cd ²⁺	Cr ³⁺	Zn ²⁺	Pb ²⁺	Cd ²⁺	Cr ³⁺	Zn ²⁺
1	20	23	17	19	20	23	17	19	20	23	13	19
2	73	23	12	19	73	23	12	19	79	23	15	19
3	20	89	20	19	20	89	20	19	25	96	20	24
4	20	23	54	19	20	23	54	19	20	24	51	20
5	20	24	20	74	20	24	20	74	25	26	22	92

Tabla VI. Concentración inicial Pb²⁺, Cd²⁺, Zn²⁺ y Cr³⁺ en solución de sistemas múltiples. **Concentración inicial (mg/L)**

3.2.5 Simulación de una mezcla de iones multimetálicos

En un reactor de 5 L se colocó una mezcla de iones metálicos la cual contenía 120mg/L de Pb^{2+} , 350 mg/L de Zn^{2+} , 7 mg/L de Cr^{3+} y 10 mg/L de Cd^{2+} , con agitación por 6 horas a 30° C, pH 5 y 150 rpm, con una relación de biomasa de 1g/L. Después de este tiempo se tomó una muestra de 2 mL y se centrifugó a 10,000 rpm por 5 minutos. Al sobrenadante se le determinó la concentración residual en el equipo de Espectroscopía de Absorción Atómica. Las muestras se realizaron por triplicado.

3.2.6 Cinética de Adsorción

En matraces Erlenmeyer de 1L se agregó 500 mL de solución sintética de metal. Se utilizaron cuatro diferentes concentraciones para cada metal, las cuales fueron: 10, 20, 50 y 80 mg/L. Se agrego la biomasa en relación de 1g/L, el matraz se llevo agitación en placa de calentamiento a 150 rpm a 30°C por 6 h. Se tomó alícuota de 5 mL a los 5, 10, 15, 20, 30, 45, 60, 120, 180, 240 y 360 minutos.

La biomasa de cada alícuota se separó en Microcentrifuga Thermoelectron modelo IEC-Microlite a 10000 rpm por 5 minutos. En el sobrenadante se determinó la concentración residual de los metales de estudio

en el equipo de Espectroscopia de Absorción Atómica. Las determinaciones se analizaron por triplicado.

3.2.7 Caracterización de la biomasa

3.2.7.1 Espectroscopía Infrarroja con Transformadas de Fourier La Espectroscopía Infrarroja es una de las técnicas espectroscópicas más versátiles y de mayor aplicación. Es una herramienta importante en la química orgánica porque se utiliza para recabar información sobre la estructura de un compuesto.

La región de infrarrojo del espectro electromagnético comprende la radiación con números de onda entre 12,800 a 10 cm⁻¹. Esta región se divide en tres secciones: cercano, medio y lejano. La sección medio es la más utilizada que se extiende entre 4000 y 650 cm⁻¹.

La radiación infrarroja es absorbida por las moléculas orgánicas y se convierte en energía de vibración molecular. Los fotones no tienen energía suficiente para provocar transiciones electrónicas pero si pueden conseguir vibraciones de los enlaces covalentes de las moléculas orgánicas. La energía necesaria para provocar una transición vibracional depende del tipo de átomos y del tipo de enlace que los mantiene unidos.

Un espectro infrarrojo es un gráfico de número de onda frente al porcentaje de transmitancia (%) o absorbancia. En este gráfico se observan la intensidad de energía absorbida por la molécula provocada por las vibraciones de los enlaces. En este grafico podemos distinguir varios tipos de enlaces como por ejemplo: enlaces C-O de un grupo carbonilo ó carboxilo, enlace O-H de un grupo de hidroxilo, etc.

Este método es muy útil para identificar los grupos funcionales de la pared celular de las biomasas. En este trabajo se llevó analizar las tres biomasas antes y después del proceso de biosorción con cada metal y con mezcla de metales, en el equipo de Espectroscopia de Infrarroja con Transformadas de Fourier

3.2.7.2 Caracterización por Microscopía Electrónica de Barrido (SEM) y Energía Dispersiva de rayos-X (EDS)

Un microscopio electrónico de barrido (SEM) es un tipo de microscopio electrónico que permite la observación y caracterización superficial de materiales inorgánicos y orgánicos, proporcionando información morfológica del material analizado, mediante el escaneo con un haz de alta energía de electrones en un patrón de exploración de trama. Los electrones interactúan con los átomos que componen la muestra produciendo señales que contienen información sobre la topografía de la superficie de la muestra, la composición y otras propiedades como la conductividad eléctrica. Estas señales pueden ser captadas por detectores adecuados, por lo tanto dependiendo del detector

tendremos cierta información de la muestra. En la figura 2 muestra un esquema de las señales que se pueden detectar en el equipo.

Figura 2. Señales provocadas por el haz de electrones en el equipo de SEM.

En este trabajo se utilizo el detector de electrones retrodispersados por que nos permite distinguir fases de un material de diferente composición química, en este caso los metales presentes en la biomasa. Lo que permite distinguir esta fase es debido a la intensidad de la señal de retrodispersados que depende del número atómico del material (a mayor número atómico mayor intensidad). Las zonas con menor número atómico se verán más obscuras que las zonas que tienen mayor número atómico. Esta es la aplicación principal de la señal de electrones retrodispersados. También se utilizo el detector de Rayos X el cual captura esta señal y proporciona un espectro de elementos es decir un análisis químico elemental de la muestra (en este caso de la biomasa).

3.2.8 Manejo de residuos

La solución residual de metales se dispuso en el contenedor "E" de Inorgánicos altamente cancerígenos y los residuos de biomasa en el contenedor de basura Industrial, ubicados en el laboratorio de Ingeniería Química de la Facultad de Ciencias Química.

CAPITULO 4

RESULTADOS Y DISCUSIONES

4.1 Isotermas de Adsorción

4.1.1 Isotermas sencillas

4.1.1.1 Levadura residual de cerveza

Se realizaron las isotermas de adsorción para sistemas sencillos de los iones metálicos Pb²⁺, Cd²⁺, Cr³⁺ y Zn²⁺ con la biomasa de levadura residual de cerveza. Para este estudio se utilizó el modelo matemático de Langmuir para correlacionar los datos, los cuales se ajustaron adecuadamente al modelo. En la figura 3 se encuentran las isotermas de adsorción para cada ion metálico, en las que se observa que la cantidad de ion metálico adsorbido se incrementó al aumentar la concentración inicial.

Figura 3. Isotermas de adsorción de Pb²⁺, Cd²⁺, Cr³⁺ y Zn²⁺ por la biomasa de levadura residual de cerveza.

Los valores de q_{max} y **b** se obtuvieron a partir de la isoterma de adsorción y se comparan en la Tabla VII. Los valores de q_{max} en mg/g se presentaron en el siguiente orden: Cr³⁺ (100.40) > Pb²⁺ (86.59) > Cd²⁺ (31.88) > Zn²⁺ (31.39). Los valores de la constante de afinidad **b** nos indican la afinidad del metal por la biomasa, a mayor valor de **b** mayor afinidad (Volesky, 2003; Sheng, 2007), para la levadura residual de cerveza los valores de **b** estuvieron en el siguiente orden: Cr³⁺ > Pb²⁺ > Zn²⁺ > Cd²⁺, hallándose los iones Cr³⁺ más afínes a la biomasa. El valor de q_{max} a pH 5 para Pb²⁺; (86.59 mg/g) es cercano al obtenido (96.4 mg/g) por Kim y colaboradores en el 2005 quienes también utilizaron como biosorbente levadura residual de cerveza. El valor de q_{max} a pH 5 para Cd²⁺; (31.88 mg/g) fue el doble del reportado por dichos investigadores con la excepción de que ellos trabajaron a pH 5.5. Esto nos muestra que aun cuando la biomasa utilizada corresponde al mismo tipo de residuo (industria cervecera) la capacidad de biosorción está en función de la composición y el tipo de cepa utilizada (Kim T. Y.; *et al*, 2005).

Tabla VII. Constantes de Langmuir de la biosorción de Pb ²⁺ , Cd ²⁺ , Zn ²⁺ y Cr ³⁺ por levadura residual de cerveza.									
	Pb	Cd	Zn	Cr					
<i>q_{max}</i> (mg/g)	86.59	31.88	31.39	100.40					
<i>b</i> (L/mg)	0.034	0.007	0.010	0.036					
R ²	0.901	0.965	0.981	0.986					

4.1.1.2 Levadura de pan.

En la Figura 4 se muestran las isotermas de adsorción para iones metálicos Pb²⁺, Cd²⁺, Cr³⁺ y Zn²⁺ con la biomasa de levadura de pan. En esta figura se distingue claramente que la biomasa presenta una mayor capacidad de adsorción para el ion Cr³⁺ en comparación con los demás iones. En la Tabla VIII se dan los valores de los parámetros de Langmuir, donde se observa un orden de afinidad y de capacidad de adsorción como sigue: Cr³⁺ (82.17) > Pb²⁺ (51.85) > Zn²⁺ (33.96) > Cd²⁺ (30.06).

Figura 4. Isotermas de adsorción de Pb²⁺, Cd²⁺, Cr³⁺ y Zn²⁺ por la biomasa de levadura de pan.

Estos resultados coinciden con los de Naeem, quien en el 2006 reportó que la afinidad de los metales por células de *Saccharomyces cerevisiae* fue de $Pb^{2+} > Zn^{2+} > Cd^{2+} > Sr^{2+}$, a un pH de 5 (Naeem, *et al*, 2006). Otros investigadores, Chen y Wang, obtuvieron el siguiente orden de afinidad: Pb^{2+} > $Ag^+ > Cr^{3+} > Cu^{2+} > Zn^{2+} > Cd^{2+} > Co^{2+} > Sr^{2+} > Ni^{2+} > Cs^+$, a un pH de 4 también con células de *Saccharomyces cerevisiae* como biosorbente. (Chen C.; *et al*, 2006).

En esta investigación se trabajó a un pH de 5 y comparando con el pH utilizado por Chen; *et al,* se deduce que al trabajar a este pH el Cr^{3+} presentó microprecipitación como hidróxido sobre la superficie de la célula, mostrando por consiguiente una **q**_{max} más alta que el plomo. La biosorción de metales por

células de levadura, *Saccharomyces cerevisiae*, ha sido reportada como asociada a la penetración del metal a través de la pared celular (Peng y Koon, 1993; A. B. Ariff; *et al.*, 1999). En algunos casos, la adsorción sobre la superficie celular externa es un sistema de defensa de la biomasa contra los metales pesados tóxicos, donde los microorganismos producen una capa polimérica externa que permite la penetración del metal a través de la pared celular (Scott y Palmer, 1990). Esto se conoce como mecanismo de microprecipitación en el cual los iones son removidos de la solución a través del proceso de precipitación, causado por los compuestos producidos por el sistema de defensa de las células. Estos razonamientos están apoyados por los resultados obtenidos de los FT-IR realizados en la presente investigación; en los espectros (mostrados en secciones posteriores) se observa la banda característica de tensión –OH de polisacáridos, glucanos, mananos presentes en la pared celular de la levadura.

Cd ²⁺ , Zn ²⁺ y Cr ³⁺ por levadura de pan.						
	Pb	Cd	Cr	Zn		
<i>q</i> _{max} (mg/g)	51.85	30.06	82.17	33.96		
<i>b</i> (L/mg)	0.019	0.021	0.044	0.006		
R ²	0.979	0.975	0.924	0.895		

4.1.1.3 Alga Caulerpa sp.

Los resultados de las isotermas de adsorción de los iones metálicos Pb^{2+} , Cd^{2+} , Cr^{3+} y Zn^{2+} por la biomasa de *Caulerpa sp.* se muestran en la Figura 5, donde se aprecia que los datos se ajustaron adecuadamente al modelo de Langmuir y se observa que la adsorción de Cr^{3+} es más alta en comparación con los metales restantes. En la Tabla IX se muestran los parámetros de q_{max} , b y R². Las capacidades de adsorción q_{max} se obtuvieron en el siguiente orden: Cr (121.71) > Pb (69.36) > Cd (30.97) > Zn (25.45) en mg/g de biomasa. Los valores de b en el caso de Caulerpa sp., sugieren una mayor afinidad por el Cr^{3+} siguiéndole el Pb²⁺, después el Cd²⁺ y por último Zn²⁺.

Figura 5. Isotermas de adsorción de Pb²⁺, Cd²⁺, Cr³⁺ y Zn²⁺ por la biomasa de alga *Caulerpa sp.*

Estos resultados concuerdan con los obtenidos por Pavasant *et al*, en 2006 quienes reportaron que *Caulerpa lentillifera* mostró una capacidad de biosorción en el siguiente orden $Pb^{2+} > Cu^{2+} > Cd^{2+} > Zn^{2+}$ (Pavasant *et al*, 2006).

Tabla IX. Constantes de Langmuir de la biosorción de Pb ²⁺ , Cd ²⁺ , Zn ²⁺ y Cr ³⁺ por <i>Caulerpa sp.</i>								
	Pb	Cd	Cr	Zn				
q _{max} (mg/g)	69.36	30.97	121.71	25.45				
<i>b</i> (L/mg)	0.127	0.062	0.131	0.029				
R ²	0.982	0.836	0.864	0.923				

4.1.1.4 Comparación de las biomasas

Las isotermas de adsorción de cada metal para las tres biomasas se muestran en la Figura 6. En el caso del Pb²⁺, Cd²⁺ y Zn²⁺ la levadura residual de cerveza mostró mayor capacidad de adsorción y en el caso de Cr³⁺ *Caulerpa sp.* presenta mayor adsorción. Los valores de la **q**_{max} revelan los siguientes órdenes de capacidad de adsorción: para Pb²⁺, levadura residual de cerveza > *Caulerpa sp.* > levadura de pan; para Zn²⁺, levadura de pan > levadura residual de cervza > *Caulerpa sp.* ; para Cd²⁺, levadura residual de cerveza > *Caulerpa sp.* > levadura de pan y para Cr³⁺, *Caulerpa sp.* > levadura de cerveza > levadura de pan.

Adsorción de Cd²⁺

Figura 6. Isotermas de adsorción de Pb²⁺, Cd²⁺, Cr³⁺ y Zn²⁺ en comparación de las tres biomasas.

Los resultados obtenidos manifiestan que el mejor biosorbente para este sistema de metales analizados es la levadura residual de cerveza seguida por *Caulerpa sp.* y por último levadura de pan. La razón por la cual la levadura residual de cerveza presentó mayor capacidad de adsorción se debe a que la levadura residual es una mezcla compleja de biomoléculas (polisacáridos, ácidos nucleicos, proteínas lípidos, etc.) ya que esta biomasa está compuesta de células rotas donde ya no se encuentra la estructura organizada de la célula donde la pared y membranas celulares juegan un papel importante en la entrada y salida de iones a su través.

En la última década se han utilizado biomasas naturales y residuos industriales para la investigación en el proceso de biosorción, estas biomasas presentan la ventaja de ser tecnologías rentables, ya que son baratas (Das N.; *et al*, 2008). Por lo tanto, la mejor biomasa no solo es la que presenta una capacidad de adsorción alta si no la que ayuda a la sustentabilidad en el medio ambiente. En el caso de la levadura residual y del alga *Caulerpa sp.* cumplen con este objetivo. Al utilizar levadura residual de cerveza se le da valor agregado a un residuo inocuo (que de hecho sirve de complemento alimenticio del ganado) y al utilizar *Caulerpa sp* que representa problemas de invasión de hábitats acuáticos se controla su proliferación y se aprovecha su capacidad

4.1.2 Sistemas multimetálicos

4.1.2.1 Levadura residual de cerveza

La presencia de iones metálicos en solución tiene un efecto en la capacidad de adsorción de cada metal, debido a que compiten por los sitios libres de la biomasa, en la Tabla X se muestran los valores de *q* para cada metal en 5 mezclas desiguales. Los valores de *q* revelan que al incrementarse la concentración inicial de alguno de los iones metálicos presentes en solución, disminuye la capacidad de adsorción de los otros iones restantes.

En los casos donde el Pb²⁺ y el Cr³⁺ están en mayor proporción, decrece la capacidad de adsorción de Cd²⁺ y Zn²⁺, por consiguiente la presencia de iones Pb²⁺ y Cr³⁺ en solución inhiben la remoción de Cd²⁺ y Zn²⁺. Cuando en la mezcla se aumenta la concentración de Cd²⁺, disminuye la capacidad de adsorción de Zn²⁺ y de igual manera al aumentar la concentración de Zn²⁺, decrece la remoción de Cd²⁺. Esto nos indica que estos dos iones compiten por el mismo sitio de adsorción en la biomasa de levadura residual de cerveza.

	cerveza.							
Co ir	oncent nicial (tració (mg/g	n ;)	qвь (mg/g)	qca (mg/g)	qcr (mg/g)	qzn (mg/g)	
Pb	Cd	Cr	Zn	1 00	1 00	1 00	1 00	
19	24	13	22	13.905	4.496	6.456	9.465	
88	25	15	22	73.232	0.000	3.122	0.742	
29	87	16	20	5.682	5.751	11.000	0.000	
20	20	40	21	4.776	2.823	5.874	0.650	
21	24	15	84	11.828	0.000	7.498	10.926	

Tabla X. Concentraciones iníciales y valores de **q** en sistema multimetálico por Levadura residual de cerveza.

La capacidad de biosorción es afectada por: las propiedades del ion metálico, la naturaleza del biosorbente y las condiciones de la biosorción. Chen y Wang en el 2006 estudiaron las propiedades de algunos iones metalicos, manifestando que el índice covalente (X^2_m r) está relacionado con la biosorción y que este ofrece un mejor ajuste con los iones suaves. Cuanto mayor sea el valor del índice covalente de un ion metálico, mayor es su potencial para formar enlaces covalentes con ligandos biológicos, presentando el siguiente orden de afinidad: S> N> O (Chen y Wang, 2006).

En la Tabla XI se presentan los valores de $X^2_m r$, la constante de estabilidad de formación de hidróxidos y la electronegatividad para los iones investigados en el presente trabajo. El Pb²⁺ tiene un valor de $X^2_m r$ mayor que los demás iones metálicos, por lo tanto, el Pb²⁺ es más afín a la formación de complejos con ligandos biológicos, siguiéndole el Cd²⁺, Zn²⁺ y por último el Cr³⁺. Sin embargo, el Cr³⁺ posee una constante de estabilidad mayor que los demás iones, por lo que precipitaría primero, hecho que también justifica los resultados de las isotermas de adsorción donde observamos que las capacidades de adsorción fueron mayores para el Cr³⁺ por mecanismo de microprecipitación. El Pb²⁺ es el más electronegativo de los cuatro, y tiene mayor capacidad para formar enlaces covalentes por lo que estas propiedades confirman que el Pb²⁺ y Cr³⁺ sean los que obtienen mayor capacidad para ser adsorbidos por las biomasas aquí estudiadas.

Та	bla XI. Constantes de p	propiedades de Pb ²⁺ , Cd ²	²⁺ , Cr ³⁺ y Zn ²⁺ .
	(log K) ^a	(X ² _m r) ^b	(X _m) ^c
Pb	7.82	4.76	1.8
Cd	4.17	4.27	1.7
Zn	4.40	3.35	1.6
Cr	10.10	3.20	1.6

^a Primera constante de estabilidad ion metálico-hidróxidos a 25°C y fuerza iónica cero. ^b Índice covalente. ^c Electronegatividad. Datos tomados de Lange Handbook de guímica.

4.1.2.2 Levadura de pan

En la Tabla XII se exhiben los valores de *q* de cada metal en las mezclas de iones para la biomasa de levadura de pan. Los resultados presentan un comportamiento parecido a la biomasa de levadura residual de cerveza, donde el Pb²⁺ y el Cr³⁺ actúan como inhibidores de la capacidad de adsorción de Cd²⁺ y Zn²⁺. Y estos últimos iones compiten por los sitios de unión con la biomasa. Como ya se mencionó anteriormente el Pb²⁺ y Cr³⁺ por sus propiedades presentan mayor capacidad de remoción por la biomasa.

ir	nicial ((mg/g	;)	<i>q</i> Рь (mg/g)	qca (mg/g)	<i>q</i> _{Cr} (mg/g)	<i>q</i> zn (mg/g)
Pb	Cd	Cr	Zn				
20	23	17	19	6.045	1.342	7.409	1.760
73	23	12	19	23.704	0.779	5.178	1.555
20	89	20	19	5.821	4.005	9.655	0.190
20	23	54	19	2.662	0.130	6.410	0.000
20	24	20	74	5.597	1.082	9.739	3.770

Tabla XII. Concentraciones iníciales y valores de *q* en sistema multimetálico por Levadura de pan. Concentración

4.1.2.3 Caulerpa sp.

En la Tabla XIII se exponen los valores de *q* para cada metal en cinco diferentes mezclas de metales. En caso donde la concentración de iones Pb^{2+} aumenta, se distingue que la capacidad de adsorción para el Cd^{2+} y Zn^{2+} disminuye. En la mezcla en la cual la concentración inicial de Cd^{2+} es más alta, se acorta el valor de *q* para el Zn^{2+} . A su vez, la mezcla donde la concentración de Cr^{3+} es mayor, se redujo los valores de *q* para Pb^{2+} , Cd^{2+} y Zn^{2+} . En el caso en el cual se incrementó la concentración inicial de Zn^{2+} , no afecta a los valores de *q* para ninguno de los iones de la solución.

Co	oncen	tració	n				
ir	nicial ((mg/g	<u>;</u>)	q Рь (mg/g)	qca (mg/g)	q _{Cr} (mg/g)	q _{Zn} (mg/g)
Pb	Cd	Cr	Zn				
20	23	13	19	15.323	4.982	9.789	7.584
79	23	15	19	23.308	1.178	10.832	1.024
25	96	20	24	12.000	15.098	17.412	3.913
20	24	51	20	6.0940	0.317	9.195	0.417
25	26	22	92	16.000	4.331	18.035	10.323

Tabla XIII. Concentraciones iníciales y valores de q en sistema multimetálico por Caulerpa Sp.

La presencia de Pb^{2+} y Cr^{3+} en solución afectan la capacidad de adsorción de Cd^{2+} y Zn^{2+} , de igual manera el Cr^{3+} afecta la capacidad de biosorción de Pb^{2+} . También se muestra que los iones de Cd^{2+} y Zn^{2+} compiten por los mismos sitios de adsorción, lo cual es congruente ya que ambos se encuentran en el mismo grupo de la tabla periódica y comparten propiedades atómicas, en la biomasa de *Caulerpa sp.*, no obstante, la biomasa tiene

preferencia por los iones Cd^{2+} ya que cuando aumenta la concentración de iones Zn^{2+} no disminuye la adsorción de iones Cd^{2+} . Tomando en cuenta que el Cd^{2+} tiene un índice covalente ($X^{2}_{m}r$) mayor que el Zn^{2+} y que el ligando de mayor afinidad es el S, el cual se encuentra en las algas, se justifica el hecho por el cual el Cd^{2+} se adsorbe preferentemente en la biomasa de *Caulerpa sp.*

Apiratikul, *et al,* 2004 en su trabajo de remoción de metales por *Caulerpa lentillifera* determinaron que la biosorción se llevó a cabo por interacción por complejos de los iones metálicos y los ligandos que se encuentran en la biomasa (Apiratikul; et al, 2004).

4.2 Simulación de una muestra real

En la Figura 7 se muestra una gráfica comparativa de la capacidad de adsorción q de los iones Pb²⁺, Cd²⁺, Cr³⁺ y Zn²⁺ en una mezcla simulada con las tres biomasas empleadas en este estudio. En la Tabla XIV se muestran las q en mg/g de cada uno de los metales de la mezcla, donde se observa que los iones Pb²⁺ y Cr³⁺ son los que se adsorbieron en mayor cantidad en las tres biomasas, cabe destacar que la concentración inicial en mayor proporción es la de los iones Zn²⁺, sin embargo este no presentó una alta capacidad de adsorción. Comparando estos resultados con los del sistema multimetálico, son parecidos ya que la presencia de Zn²⁺ no afecta significativamente al Pb²⁺ ni al Cr³⁺, aunque si al Cd²⁺. En este caso la concentración presente de Cd²⁺ es baja.

Los iones Pb^{2+} presentan mayor adsorción, pero comparando con la adsorción en sistemas sencillos a la misma concentración, el valor de q disminuye en sistemas multimetálicos. De igual manera con los iones Cr^{3+} se adsorbieron en menor proporción en sistemas multimetálicos en comparación con el sistema sencillo. Esto indica que hay una competencia entre los iones por los sitios de adsorción, además el incremento de la fuerza iónica disminuye la actividad de los iones.

Levadura Residual de cerveza		Levad	ura de Pan	Alga (Caulerpa sp
Metal	q (mg/g)	Metal	q (mg/g)	Metal	q (mg/g)
Pb	22.321	Pb	28.571	Pb	33.929
Cd	0.164	Cd	0.109	Cd	0.218
Cr	1.139	Cr	5.190	Cr	4.81
Zn	3.694	Zn	1.847	Zn	2.463

Tabla XIV. Valores de **q**_e (mg/g) para los iones metálicos Pb²⁺, Cd²⁺, Cr³⁺ y Zn²⁺ en una mezcla simulada con levadura residual de cerveza, levadura de pan y *Caulerpa sp*.

4.3 Cinéticas de Biosorción

4.3.1 Levadura residual de cerveza

4.3.1.1 Plomo

Figura 8. Cinética de adsorción de Pb²⁺ por Levadura residual de cerveza a diferentes concentraciones.

La cinética de adsorción de plomo por levadura residual de cerveza a diferentes concentraciones se muestra en la Figura 8. La curva de una cinética se puede dividir en tres partes: la primera es lineal, en esta parte se relaciona el incremento proporcional del ion metálico enlazado con la biomasa a través del tiempo; en la segunda parte, la cantidad en que aumenta la adsorción del ion

metálico es muy ligera; en la tercera parte, la biosorción no depende del tiempo. En la tabla XV se dan los valores de la constante de velocidad, el orden de reacción y el coeficiente de correlación R^2 . Se observa que el orden de reacción, en las cuatro concentraciones, es un valor fraccionario. Una reacción de segundo orden nos indica que existe una relación bimolecular, es decir que se requiere interacción de los iones con la biomasa (Kargi, 2007), denotando que la biosorción de Pb²⁺ se lleva a cabo mediante varios mecanismos ya que el orden de reacción es decimal, el cual osciló entre 1.654 y 2.626.

Concentración inicial (mg/L)	Orden de reacción	К	R ²
10 1	2.568	56.214	0.99108
20	1.654	359.269	0.99523
50	2.626	339.538	0.99833
80	1.752	1590.800	0.99809

La adsorción de los iones Pb²⁺ fue rápida, después de los primeros 5 minutos, la captación de los iones fue variando muy lentamente. La mayor parte de los iones Pb²⁺ (aproximadamente el 90 %) se adsorben en los primeros 30 minutos de contacto con la biomasa. El equilibrio entre los sitios de enlace de la biomasa y los iones Pb²⁺ se efectuó después de las 2 horas de contacto. La rápida captación del Pb²⁺ indica que ocurre intercambio iónico, debido a que ocurrió disminución del pH a 3.5 al final del proceso de biosorción. Esto

concuerda con los comentarios de Hadi *et al* 2003, que establecen que el intercambio iónico es el mecanismo predominante en los procesos de biosorción (Hadi, *et al*, 2003).

Resultados similares fueron obtenidos por Ferraz y Teixeira (1999) donde la adsorción de Pb^{2+} y Cr^{3+} con levadura residual de cerveza ocurrió en los primeros cinco minutos para Pb^{2+} , y fue más rápida que Cr^{3+} .

4.3.1.2 Cadmio

Figura 9. Cinética de adsorción de Cd²⁺ por Levadura residual de cerveza a diferentes concentraciones.

El proceso de biosorción de los iones Cd^{2+} fue rápido, después de los primeros cinco minutos la remoción de los iones fue cambiando lentamente. A los treinta minutos se remueve la mayor parte de los iones Cd^{2+} (aproximadamente el 90 %). El equilibrio se alcanza después de una hora de contacto. En la Tabla XVI se muestran los parámetros cinéticos y el coeficiente de correlación. La adsorción de Cd^{2+} en las cuatro concentraciones se lleva a cabo en un orden de reacción igual a uno, esto indica que hay un solo tipo de interacción, probablemente física, el mayor tiempo del proceso consistió en la difusión del ion en el medio hacia el sitio de unión. El intercambio iónico por atracción electrostática es el mecanismo que predomina en la biosorción, por lo que posiblemente los iones Cd^{2+} se remueven por este tipo de mecanismo.

Hadi; *et al*, en el 2003 observaron que el cadmio se adsorbe rápidamente, durante los primeros cinco minutos la captación de iones Cd^{2+} es muy rápida y después se vuelve lenta, debido a que el mecanismo de biosorción es intercambio iónico (Hadi; *et al*, 2003).

Concentración inicial (mg/L) 10	Orden de reacción 1.000	К 17.817	R ² 0.99101
20	1.000	34.157	0.99087
50	1.000	9.932	0.97215
80	1.000	37.292	0.98995

Tabla XVI. Parámetros cinéticos y coeficiente de correlación para la biosorción de Cd²⁺ por levadura residual de cerveza.

4.3.1.3 Cromo

Figura 10. Cinética de adsorción de Cr³⁺ por Levadura residual de cerveza a diferentes concentraciones.

En la Figura 10 se exponen las graficas de las cinéticas de Cr³⁺ a diferentes concentraciones. Al igual que los iones Pb²⁺ y Cd²⁺, la adsorción de los iones Cr³⁺ fue un proceso rápido, después de los primeros 5 minutos la captación de los iones fue variando muy lentamente. La mayor parte de los iones Cr³⁺ (aproximadamente el 90 %) se adsorben en los primeros 30 minutos equilibrio de contacto con la biomasa. La biosorción alcanza el aproximadamente a la hora de contacto.

Los datos de los parámetros cinéticos y el coeficiente de correlación se dan en la Tabla XVII. Los datos de las concentraciones iníciales de 10, 20 y 80 mg/L se ajustan a valores de reacción fraccionados arriba de 2, pero en el caso de 50 mg/L se ajusta a 2. Esto indica que el proceso de biosorción involucra dos pasos la difusión del ion y un enlace químico (Feng, 2009), además que pudiera ocurrir por diferentes tipos de mecanismos y siendo el intercambio iónico el que impera.

Concentración inicial (mg/L)	Orden de reacción	К	R ²
10	2.032	207.057	0.99173
20	2.173	37.668	0.99044
50	2.000	1165.300	0.99811
80	2.031	649.321	0.99863

Tabla XVII. Parámetros cinéticos y coeficiente de correlación para la biosorción de Cr³⁺ por levadura residual de cerveza.

Figura 11. Cinética de adsorción de Zn²⁺ por Levadura residual de cerveza a diferentes concentraciones.

Las gráficas de las cinéticas de Zn^{2+} a diferentes concentraciones se presentan en la Figura 11. El Zn^{2+} se enlaza a la biomasa rápidamente, después de los primeros cinco minutos la captación de los iones cambió paulatinamente. La mayor parte de los iones Zn^{2+} (aproximadamente el 90 %) se adsorben en los primeros treinta minutos de contacto con la biomasa. La biosorción alcanza el equilibrio, aproximadamente, a la hora de contacto.

Los datos de los parámetros cinéticos y el coeficiente de correlación se muestran en la Tabla XVIII. Donde se aprecia que los órdenes de reacción disminuyeron de 2 a 1 al aumentar la concentración inicial de los iones Zn^{2+} .

Estos mismos resultados fueron reportados por Kargi en el 2007, refiriendo que esto ocurre porque al aumentar la concentración de los iones Zn²⁺, hay un aumento en la competencia por los sitios de unión entre los mismos iones ocasionando interferencia para el enlace físico. (Kargi, 2007). Por lo tanto predomina la difusión del ion hacia el sitio de unión enlazándose de manera física.

Tabla XVIII. Parámetros cinéticos y coeficiente de correlación para la biosorción de Zn²⁺ por levadura residual de cerveza.

Concentración inicial (mg/L) 10	Orden de reacción 2.000	К 24.798	R ² 0.99633
20	1.000	3.778	0.97224
50	1.000	33.450	0.98738
80	1.000	47.941	0.99702

4.3.2.1 Plomo

Figura 12. Cinética de adsorción de Pb²⁺ por Levadura de pan a diferentes concentraciones.

La cinética de adsorción de Pb²⁺ por levadura de pan a diferentes concentraciones se muestra en la Figura 12. En la tabla XIX se dan los valores de la constante de velocidad, el orden de reacción y el coeficiente de correlación R². Se observa que el orden de reacción, en las concentraciones de 10, 20 y 50 mg/L, es un valor fraccionario aproximadamente de 2. Sin embargo, a 80 mg/L se ajusta a un orden de reacción de 1. Anteriormente se mencionó

que esto sucede cuando los iones compiten por el mismo sitio de adsorción de la biomasa. Un orden de reacción de 2 sugiere que el proceso de biosorción de Pb²⁺ por levadura de pan se basó en una reacción química entre el ion y la biomasa a bajas concentraciones (Suleman, 2009).

pan.						
Concentración inicial (mg/L)	Orden de reacción	К	R ²			
10	1.933	41.055	0.98764			
20	1.912	20.602	0.98249			
50	2.023	99.241	0.99504			
80	1.000	38.676	0.99788			

 Tabla XIX. Parámetros cinéticos y coeficiente de correlación para la biosorción de Pb²⁺ por levadura de pan.

La remoción de los iones Pb²⁺ fue rápida, después de los primeros cinco minutos la captación de los iones fue variando lentamente. Cerca del 90% se remueve en los primeros treinta minutos de exposición con la biomasa. El equilibrio entre los sitios de enlace de la biomasa y los iones de Pb²⁺ se estabilizó después de una hora de contacto. Una remoción rápida nos indica que el proceso de biosorción se llevó por intercambio iónico.

Figura 13. Cinética de adsorción del ion Cd²⁺ por Levadura de pan a diferentes concentraciones.

La cinética de adsorción de Cd^{2+} por levadura de pan a diferentes concentraciones se muestra en la Figura 13. En la tabla XX se presentan los valores de la constante de velocidad, el orden de reacción y el coeficiente de correlación R^2 . Al aumentar la concentración inicial de los iones Cd^{2+} aumenta el orden de reacción de 1 a 2. Hashim y colaboradores encontraron en un estudio de biosorción de Cd^{2+} por algas pardas, verdes y rojas, que el incremento de *n* es debido al aumento de diferentes interacciones de los iones con la biomasa (Hashim, et al, 2004). Por lo tanto, al aumentar la concentración de los iones de Cd^{2+} , aumentan los enlaces químicos en diferentes sitios de adsorción en la biomasa de levadura de pan.

Concentración inicial (mg/L) 10	Orden de reacción 1.000	К 41.055	R ² 0.98764
20	1.000	20.602	0.98249
50	1.839	99.241	0.99504
80	2.148	38.676	0.99788

Tabla XX. Parámetros cinéticos y coeficiente de correlación para la biosorción de Cd²⁺ por levadura de pan.

El proceso de captación de los iones Cd²⁺ fue rápido los primeros cinco minutos, después fue variando lentamente El equilibrio entre el los sitios de enlace de la biomasa y los iones de Cd²⁺ se estabilizó después de una hora de contacto.

4.3.2.3 Cromo

En la Figura 14 se exponen las gráficas de las cinéticas de Cr^{3+} a diferentes concentraciones. En el caso del Cr^{3+} la biosorción por levadura de pan fue muy rápida, a los cinco minutos aproximadamente el 90 % de los iones se adsorbieron. El equilibrio se alcanzó a los treinta minutos de contacto.

Figura 14. Cinética de adsorción del ion Cr³⁺ por Levadura de pan a diferentes concentraciones.

Los datos de los parámetros cinéticos y el coeficiente de correlación se presentan en la Tabla XXI. Los valores de orden de reacción en las concentraciones iníciales de 10, 20 y 50 mg/L se ajustan a valores de reacción fraccionados arriba de 2, pero en el caso de 80 mg/L se ajusta a 2. Por lo que el proceso de biosorción de iones Cr³⁺ en biomasa de levadura de pan se lleva a cabo en dos pasos, el de difusión hacia los sitios de unión y una reacción química con los grupos funcionales de la biomasa. Los iones Cr³⁺ se enlazan por diferentes mecanismos en el proceso de biosorción. La pendiente tan pronunciada en la curva de la cinética indica una rápida remoción por precipitación y esto se debe a que después del enlace del metal con la biomasa, sirve como núcleo que desencadena el proceso cristalización.

	pun.		
Concentración inicial (mg/L)	Orden de reacción	к	R ²
10	2.168	97.842	0.99717
20	2.089	70.068	0.99119
50	2.486	273.316	0.99459
80	2.000	848.179	0.99969

Tabla XXI. Parámetros cinéticos y coeficiente de correlación para la biosorción de Cr³⁺ por levadura de pan.

4.3.2.4 Zinc

Figura 15. Cinética de adsorción del ion Zn²⁺ por Levadura de pan a diferentes concentraciones.

Se exponen las gráficas de las cinéticas de Zn²⁺ a diferentes concentraciones en el proceso de biosorción con la biomasa de levadura de pan en la Figura 15. El proceso de biosorción fue muy rápido, a los treinta minutos aproximadamente el 90% de los iones se adsorbieron. Después de los cinco minutos la remoción fue más lenta y el equilibrio se alcanzó después de una hora de contacto con la biomasa.

Los datos de los parámetros cinéticos y el coeficiente de correlación se muestran en la Tabla XXII. A diferencia de la levadura residual de cerveza, la cinética de adsorción de los iones Zn²⁺ por la biomasa de levadura de pan presenta orden de reacción creciente al incrementar la concentración inicial. Esto indica que participan diferentes mecanismos en el proceso de biosorción. La cinética nos muestra que para este proceso de biosorción predomina la quimisorción.

Concentración inicial (mg/L)	Orden de reacción	К	R ²
10	1.000	7.643	0.99119
20	2.208	7.329	0.98868
50	2.509	161.306	0.99048
80	2.145	206.970	0.98087

Tabla XXII. Parámetros cinéticos y coeficiente de correlación para la biosorción de Zn²⁺ por levadura de

4.3.3.1 Plomo

Figura 16. Cinética de adsorción del ion Pb²⁺ por alga *Caulerpa sp.* a diferentes concentraciones.

En la Figura 16 se muestran las gráficas de las cinéticas de adsorción de Pb²⁺ a diferentes concentraciones por el alga *Caulerpa sp.* La biosorción de Pb²⁺ fue muy rápida, después de los cinco minutos la adsorción de Pb²⁺ fue más lenta. A los treinta minutos la mayor parte de los iones (aproximadamente

el 90%) se adsorbieron. El equilibrio entre los iones libres y los sitios de adsorción se logró después de treinta minutos de contacto con *Caulerpa sp*.

Los datos de los parámetros cinéticos y el coeficiente de correlación del proceso de biosorción de Pb²⁺ por *Caulerpa sp.* se muestran en la Tabla XXIII. El orden de reacción aumenta de 1 a 2.7 al aumentar la concentración de los iones Pb²⁺, debido a las diferentes interacciones entre el ion y la biomasa, las cuales se van generando al estar presentes más iones en solución.

coeficiente de correlaci	ón para la biosorción	de Pb ²⁺ por Caulerpa sp.
Orden de reacción	К	R ²
1.000	8.411	0.99687
1.092	4.853	0.99029
2.734	15.837	0.99381
2.734	21.356	0.99398
	coeficiente de correlación Orden de reacción 1.000 1.092 2.734 2.734	Coeficiente de correlación para la biosorción Orden de reacción K 1.000 8.411 1.092 4.853 2.734 15.837 2.734 21.356

4.3.3.2 Cadmio

Las gráficas de las cinéticas de adsorción Cd^{2+} a diferentes concentraciones por el alga *Caulerpa sp.* se exponen en la Figura 17. El proceso de biosorción de Cd^{2+} fue muy rápido, después de los cinco minutos la remoción de Cd^{2+} fue más lenta. La unión de la mayor parte de los iones a *Caulerpa sp.* (aproximadamente el 90%) ocurrió durante los primeros treinta minutos. El equilibrio entre los iones libres y los sitios de unión se logró después de 30 minutos de contacto con *Caulerpa sp.*

Figura 17. Cinética de adsorción del ion Cd²⁺ por alga *Caulerpa sp.* a diferentes concentraciones.

En la Tabla XXIV se muestran los datos de los parámetros cinéticos y el coeficiente de correlación del proceso de biosorción de Cd²⁺ por *Caulerpa sp.* Al incrementar la concentración inicial de los iones Cd²⁺, el orden de reacción aumenta, esto manifiesta que ocurren diferentes interacciones entre el ion y la biomasa, las cuales se van generando al estar presentes más iones en solución. Por con siguiente, el proceso de biosorción de iones Cd²⁺ por Caulerpa sp. se lleva a cabo por reacciones bimoleculares.

Concentración inicial (mg/L)	Orden de reacción	к	R ²
10	1.498	10.968	0.99838
20	2.000	20.606	0.99378
50	2.256	36.138	0.99669
80	2.111	22.883	0.98475

abla XXIV. Parámetros cinéticos	y coeficiente de correlación	para la biosorción de Cd ²⁺	por Caulerpa sp.
---------------------------------	------------------------------	--	------------------

4.3.3.3 Cromo

En la Figura 18 se exponen las gráficas de las cinéticas de adsorción de Cr^{3+} a diferentes concentraciones por el alga *Caulerpa sp.* El proceso de biosorción de Cr^{3+} fue muy rápido, después de los 5 minutos la remoción de los iones fue lenta. La cantidad de los iones enlazados por *Caulerpa sp.* (aproximadamente el 90%), lo hicieron durante los primeros 30 minutos y el equilibrio entre los iones libres y los sitios de adsorción se logró después de 30 minutos de contacto con *Caulerpa sp.*

Figura 18. Cinética de adsorción del ion Cr³⁺ por alga *Caulerpa sp.* a diferentes concentraciones.

En la Tabla XXV se muestran los datos de los parámetros cinéticos y el coeficiente de correlación del proceso de biosorción de Cr^{3+} por *Caulerpa sp.,* se observa que tiene el mismo comportamiento que ha presentado el ion Cr^{3+} con las anteriores biomasas, que al incrementar la concentración inicial de los iones, el orden de reacción aumenta debido a que ocurren diferentes interacciones entre el ion y la biomasa, las cuales se van generando al estar presentes más iones en solución. Por lo cual, el modelo cinético sugiere que el proceso de biosorción es por medio de difusión del ion Cr^{3+} al sitio de unión y por un enlace químico con los grupos funcionales de la biomasa *Caulerpa sp.*.

Concentración inicial (mg/L)	Orden de reacción	к	R ²
10	2.125	36.080	0.99102
20	2.091	150.983	0.99685
50	2.244	35.830	0.97766
80	2.498	70.628	0.97963

Tabla XXV. Parámetros cinéticos y coeficiente de correlación para la biosorción de Cr³⁺ por Caulerpa sp.

4.3.3.4 Zinc

Figura 19. Cinética de adsorción del ion Zn²⁺ por alga *Caulerpa sp.* a diferentes concentraciones.

En la Figura 19 se exponen las gráficas de las cinéticas de adsorción de Zn^{2+} a diferentes concentraciones por el alga *Caulerpa sp.* El comportamiento del proceso de biosorción del Zn^{2+} fue similar a los iones anteriores. La remoción fue aproximadamente del 90% de estos iones por *Caulerpa sp.*, se llevó a cabo en los primeros treinta minutos y el equilibrio entre los iones libres y los sitios de adsorción se logró después de treinta minutos de contacto con *Caulerpa sp.*

Estos resultados concuerdan con los reportados en el 2006 por Pavasant cuyo proceso de biosorción de iones Pb²⁺, Cd²⁺, Cu²⁺ y Zn²⁺ utilizando *Caulerpa lentillifera* como biosorbente fue rápido y el equilibrio se alcanzó dentro de los primeros 10-20 minutos (Pavasant, 2006).

Tabla XXVI. Parámetros cinéticos y coeficiente de correlación para la biosorción de Zn ²⁺ por Caulerpa sp.						
Concentración inicial (mg/L)	Orden de reacción	К	R ²			
10	1.936	13.139	0.99730			
20	1.586	11.648	0.99617			
50	1.616	21.419	0.99483			
80	1.298	15.423	0.99154			

El modelo cinético mostró un orden de reacción alrededor de 2, indicando que el proceso de biosorción de iones Zn²⁺ por *Caulerpa sp.* esta dada por reacción química entre el ion y la biomasa *Caulerpa sp.* Al ir aumentando la

concentración de los iones Zn²⁺ aumentan las interacciones entre el ion y la biomasa.

4.4 Caracterización de la biomasa

4.4.1 FT-IR

4.4.1.1 Levadura residual de cerveza

El espectro de IR para la levadura residual con cada metal y mezcla de metales se muestra en la Figura 20, el cual revela que a 3275 cm¹⁻ se encuentra una banda característica de la tensión del enlace -OH, que se le atribuye a la presencia de grupos hidroxilo y carboxilo. En 2927cm⁻¹ se localiza un pico particular de las vibraciones de -CH₂, aludiendo la presencia de moléculas grandes. Se corrobora la presencia de grupos carboxilos con las bandas características a 1630 cm⁻¹ y 1239 cm⁻¹ correspondientes a la tensión por vibración del doble enlace del carbonilo C=O y al enlace sencillo C-O, respectivamente. En 1533 cm⁻¹ se muestra una banda de tensión N-H que es característica de los grupos amino (-NH₂). Cerca de 1023 cm⁻¹ se encuentran bandas intensas propias de la tensión P-O de grupos fosfatos.

Figura 20. Espectro de FTIR de Levadura residual de cerveza antes y después del proceso de biosorción.

4.4.1.2 Levadura de pan

En la Figura 21 se muestran los espectros de FTIR de la biomasa de la levadura de pan antes y después del proceso de biosorción. En el número de onda de 3280 cm⁻¹ se encuentra una banda característica de la intensidad de la vibración del enlace H-O, indicando la presencia del grupo hidroxilo y carboxilo. Este último se corrobora con las bandas características a 1645 cm⁻¹ y 1249 cm⁻¹ correspondientes a la tensión por vibración del doble enlace del carbonilo C=O y al enlace sencillo C-O, respectivamente. En 1543 cm⁻¹ se observa una banda de tensión N-H que es característica de los grupos amino (-NH₂). Alrededor de 1031 cm⁻¹ se encuentran bandas intensas características de la tensión P-O de grupos fosfatos. Las bandas de los espectros cambiaron después del proceso de biosorción dependiendo del metal que se encuentra enlazado a la biomasa.

En los espectros de la biomasa tratada con cada uno de los metales estudiados (Pb, Cd, Cr y Zn) las bandas son menos pronunciadas debido a que los grupos funcionales presentes en la pared celular están interactuando con estos metales.

Figura 21. Espectro de FTIR de Levadura de pan antes y después del proceso de biosorción.

4.4.1.3 Alga Caulerpa sp.

Los espectros de FTIR revelaron que los principales grupos funcionales en la biomasa *Caulerpa sp.* son carboxilos, aminos y sulfonatos, los cuales participan en el proceso de biosorción. En la Figura 22 se muestran los espectros, de *Caulerpa sp.* antes y despues del proceso de adsorción con cada metal y con mezcla de metales. Se presenta una banda característica de la frecuencia de vibración de la tensión del O-H alrededor de 3268 cm⁻¹ correspondiente al grupo carboxilo, de igual manera se muestra una banda en 1634 cm⁻¹ de tensión de enlace C-O de carbonilo. En 1530 cm⁻¹ se observa una banda de tensión N-H que es característica de los grupos amino (-NH2). Alrededor de 1026 cm⁻¹ se encuentran bandas intensas características de la tensión S-O de grupos sulfonatos S=O. Después del proceso de biosorción las bandas de los espectros cambian dependiendo del metal que se encuentra enlazado a la biomasa. Las bandas varían su intensidad después del proceso de adsorción con los iones Pb²⁺, Cd²⁺, Cr³⁺ y Zn²⁺, esto puede deberse a los tipos de enlaces que se forman con los grupos funcionales (coordinación, iónicos, etc.).

Figura 22. Espectro de FTIR de Caulerpa sp. antes y después del proceso de biosorción.

4.4.2.1 Levadura de pan Saccharomyces cerevisiae viva (no

activa)

Tabla.XXVII Análisis elemental de rayos X por energía dispersiva de la levadura de pan viva (no activa) sin metal.

	/	
Elemento	% Masa	% Átomos
С	68.41	74.98
0	29.42	24.21
Р	00.89	00.38
K	01.28	00.43

Figura 23. Espectro EDS de células de levadura de pan viva (no activa) sin metal.

Figura 24. Micrografía electrónica de barrido (SEM) por electrones retrodispersados de levadura de pan viva (no-activa) sin metal.

La tabla XXVII muestra la composición elemental resultante del espectro EDS realizado a las células de levadura de pan viva (no activa) mostrada en la figura 23 de la microscopía electrónica de barrido (SEM) por electrones retrodispersados. Como puede apreciarse en el espectro se observan los picos característicos de C, O y trazas de P, siempre presentes en biomasas, así como un pico correspondiente a K⁺. Al observar y comparar estos resultados con los de la Tabla XXVIII que muestra la composición elemental correspondiente al espectro EDS (figura 25) realizado a las mismas células de levadura de pan después del proceso de biosorción con soluciones de iones Cr^{3+} , Pb^{2+} y Zn^{2+} de 150 ppm, en el inciso a) y c) claramente se observa que el pico correspondiente a K⁺ desaparece, sugiriendo que los iones Cr^{3+} y Zn^{2+} fueron adsorbidos y reemplazaron a los iones K⁺ de la superficie celular. La figura 26 muestra la micrografía electrónica de barrido SEM de la biomasa de levadura de pan después del proceso con Cr³⁺ tomada mediante la técnica de electrones retrodispersados y puede observarse una zona brillante sobre la superficie de la

biomasa que indica la presencia de metal adsorbido a la superficie celular, este efecto brillante no se observa en la figura 24 de las células de levadura sin metal, esto demuestra que el metal fue adsorbido en la superficie de las células de levadura.

Estos resultados concuerdan con los obtenidos por otros investigadores como Heldwein y colaboradores en 1977, quienes observaron que los metales pesados se adsorben a la superficie celular de la levadura sustituyendo a los iones K⁺ y Mg²⁺ de la pared de la célula (Heldwein *et al*, 1977). Asimismo, Ariff *y* colaboradores en 1999 observaron la adsorción de metales pesados por sustitución de iones Mg²⁺ y K⁺ presentes en la pared celular del hongo *Rhizopus oligosporus* (Ariff *et al*, 1999).

Comparando las tablas XXVII y XXVIII, para el caso de Pb²⁺, se observa que no hay cambios de los elementos antes y después del proceso de biosorción. Sin embargo, se determina la presencia del Pb²⁺ en la superficie de la biomasa, lo cual indica que este ion posiblemente se esté enlazando a la biomasa por otro tipo de mecanismos diferente al del intercambio iónico, por ejemplo: coordinación ó enlace covalente.

76

	uesp	Jues dei pr			JI IONES CI	, ib you	•	
	Cr ³⁺			Pb ²⁺			Zn ²⁺	
Elemento	%	%	Elemento	%	%	Elemento	%	%
	Masa	Atomos		Masa	Atomos		Masa	Atomos
С	73.71	79.92	С	57.83	88.19	С	81.22	87.64
0	23.64	19.24	0	04.54	05.20	0	13.50	10.94
Р	00.78	00.33	Р	04.32	02.56	Zn	03.56	00.70
K	00.09	00.03	Pb	30.41	02.69	Р	01.72	00.72
S	00.26	00.11	К	02.90	01.36			
Cr	01.45	00.36						
Mn	00.07	00.02						

Tabla.XXVIII. Análisis elemental de rayos X por energía dispersiva de la Levadura de pan después del proceso de biosorción con iones Cr³⁺, Pb²⁺ y Cd²⁺.

Figura.25 Espectro EDX de levadura de pan después del proceso de biosorción con iones a) Cr^{3+} , b) Pb^{2+} y c) Zn^{2+} .

Figura 26. Micrografía SEM de Levadura de pan después del proceso de biosorción con iones

Cr³⁺

4.4.2.2 SEM del Alga Caulerpa sp.

		energie alepei
Elemento	% Masa	% Átomos
С	60.62	69.01
Ο	32.65	27.91
Na	01.11	00.66
Mg	00.23	00.13
AI	00.27	00.14
Si	01.38	00.67
Р	00.07	00.03
S	01.86	00.79
CI	01.07	00.79
К	00.19	00.07
Ca	00.54	00.19

Tabla XXIX. Análisis elemental de rayos X por energía dispersiva de Caulerpa sp.

Figura.27 Espectro EDS de Caulerpa sp virgen

Figura 28. Micrografía electrónica de barrido (SEM) de Caulerpa sp. Virgen

La tabla XXIX muestra los porcentajes elementales obtenidos del espectro EDS (figura 27) de *Caulerpa sp* virgen, revelando la presencia de Si, S, Na y CI en la superficie celular del alga, dicha composición es congruente con la composición química del agua de mar ya que *Caulerpa sp* es una macroalga marina. En la figura 28 se presenta la micrografía de SEM por electrones retrodispersados del alga virgen. Al comparar los resultados obtenidos de estas 3 figuras con las logradas después del proceso de

biosorción con iones Cr^{3+} y Pb^{2+} a 150 ppm (tabla XXX, figura 30) puede destacarse la desaparición y/ó disminución del pico correspondiente al S que se entiende como un enlazamiento de los grupos –S=O al metal. La desaparición y/ó disminución del Si y Na denotan que ocurrió la sustitución de Si y Na por los iones Cr^{3+} y Pb^{2+} en la superficie celular del alga. Asimismo, se observa la desaparición de los iones K⁺ después del proceso de adsorción con los iones Cr^{3+} , Pb^{2+} y Cd^{2+} , esto indica que se están sustituyendo los iones K⁺ por cada uno de los iones metálicos a los que se expuso la biomasa por separado (Cr^{3+} , Pb^{2+} y Cd^{2+}).

Estos resultados concuerdan con los obtenidos en los espectros FTIR donde aparece la disminución de la intensidad de los picos de absorción característicos de tensión S=O, -SO₃, y –Si-O discutidos en la sección anterior. En la figura 31 se muestra la micrografía de SEM por electrones retrodispersados de *Caulerpa sp* después del proceso de biosorción con iones Cr³⁺ en dicha figura destaca la superficie brillante que recubre la biomasa que indica la adsorción del metal a la superficie; al comparar con la figura 28 de la biomasa virgen no aparece la superficie brillante, confirmando así la adsorción del metal a la pared celular del alga.

Figura 29. Micrografía de SEM de Caulerpa sp virgen con Diatomeas.

Cabe destacar que la micrografía SEM de *Caulerpa sp* virgen de la figura 29 muestra la presencia de Diatomeas, algas con pared celular rica en sílice que comúnmente se adhieren a *Caulerpa sp*. Estos hallazgos concuerdan con los citados por otros investigadores Magda A. Shafik y Islam M. Manawy, 2008; que estudiaron la morfología de *Caulerpa sp* donde se indica que Diatomeas producen una biopelícula para adherirse a la superficie de esta alga.

	Cr ³⁺		1	Cd ²⁺			Pb ²⁺	
Elomonto	%	⁶ ⁸ Elemente	Elemento	%	, %	Elemento	%	, %
Liemento	Masa	Atomos	Liemento	Masa	Átomos	Liemento	Masa	Átomos
С	73.71	79.92	С	56.48	68.07	С	64.16	72.72
0	23.64	19.24	0	29.94	27.09	0	31.19	26.54
S	00.26	00.11	Na	01.07	00.67	AI	00.54	00.27
Cr	01.45	00.36	AI	00.88	00.47	Si	00.47	00.23
			Si	03.02	01.56	Pb	03.65	00.24
			S	02.16	00.97			
			Cd	01.44	00.19			
			Са	01.83	00.66			
			Ce	03.20	00.33			

Tabla XXX. Análisis elemental de rayos X por energía dispersiva de *Caulerpa sp.* después del proceso de biosorción con iones Cr³⁺.

Figura 31. Micrografía de SEM de *Caulerpa sp.* después del proceso de biosorción con iones Cr³⁺.

CAPITULO 5

CONCLUSIONES

- Se calcularon las isotermas de adsorción para *Caulerpa sp*, levadura residual de cerveza y levadura de pan para iones Pb²⁺, Cd²⁺, Cr³⁺y Zn²⁺ las cuales se ajustaron adecuadamente al modelo de Langmuir.
- Se evaluaron las capacidades de biosorción para las tres biomasas en sistemas sencillos. Para levadura residual de cerveza el orden fue: Cr³⁺ (100.40) > Pb²⁺ (86.59) > Cd²⁺ (31.88) > Zn²⁺ (31.39) mg/g de biomasa.
 Para la levadura de pan el orden fue el siguiente: Cr³⁺ (82.17) > Pb²⁺ (51.85) > Zn²⁺ (33.96) > Cd²⁺ (30.06) mg/g de biomasa. Para *Caulerpa sp* el orden fue: Cr³⁺ (121.71) > Pb²⁺ (69.36) > Cd²⁺ (30.97) > Zn²⁺ (25.45) mg/g de biomasa.
- En los sistemas multimetálicos se determinó que el Pb²⁺ y el Cr³⁺ inhiben la capacidad de adsorción de Cd²⁺ y Zn²⁺ en las tres biomasas. El Cd²⁺ y

 Zn^{2+} compiten por los mismos sitios de unión a la biomasa. La biomasa *Caulerpa sp* presentó preferencia por Cd²⁺.

- Se compararon las capacidades de adsorción de las tres biomasas frente a una mezcla multimetálica simulada encontrando que la levadura residual de cerveza se presentó el siguiente orden: Pb²⁺>Zn²⁺>Cr³⁺> Cd²⁺. Para levadura de pan y Caulerpa el orden fue igual: Pb²⁺>Cr³⁺>Zn²⁺>Cd²⁺. Para todas las biomasas el Pb²⁺ fue el mejor adsorbido.
- Se obtuvieron los parámetros cinéticos para las tres biomasas con cada ion metálico a concentraciones de 10, 20, 50 y 80 ppm. En todos los casos la adsorción fue rápida completándose el equilibrio después de una hora de contacto. Y los órdenes de reacción estuvieron en el orden de 2.
- De la caracterización de las biomasas por FT-IR y SEM-EDX se encontró que las biomasas de levadura residual de cerveza y levadura de pan poseen grupos carboxilos, aminos y fosfatos que participan principalmente en el proceso de biosorción. En la biomasa de *Caulerpa sp* los grupos funcionales hallados y que probablemente están involucrados en el proceso de biosorción son carboxilos, aminos sulfonatos y silicatos.
- Las micrografías electrónicas de barrido (SEM) y los análisis elementales
 (EDS) indicaron que el intercambio iónico fue esencialmente el

85

mecanismo de biosorción de estos iones metálicos y que la adsorción ocurrió en la superficie de la biomasa.

CAPITULO 6

Referencias bibliográficas

- 1) Ahalya N.; *et al.* Biosorption of chromium (VI) from aqueous solutions by the husk of Bengal gram (Cicer arientinum). Electronic Journal of Biotechnology. 8 (3): 258-264. (2005).
- Alluri H. K.; et al, (2007). "Biosorption: An eco-friendly alternative for heavy metal removal." African Journal of Biotechnology 6 (25): 2924-2931.
- Apiratikul R.; et al. Biosorption binary mixtures havy matals. Environmental & Hazardous Management. 26: 199-207. (2004).
- 4) Basha, S.; Jha, B. Estimation of Parameters for Biosorption of Cd(II) and Pb(II) onto Brown Seaweed, Lobophora variegata. J. Chem. Eng. 53: 449-455. (2008).
- 5) Basha, S.; Murthy, Z. V. P.; Jha, B. Sorción of Hg(II) from Aqueous Solution onto *Carica papaya*: Application of Isotherms. Ind. Eng. Chem. 47: 980-986. (2008).
- 6) Cañizares, R. O. Biosorción de metales pesados mediante el uso de biomasa microbiana. Revista Latinoamericana de Microbiología 42: 131-143. (2000).
- 7) Capasso, R.; Pigna, M.; Martino, A.; Pucci, M.; Filomena, S.; Violante, A. Potential Remediation of Waters Contaminated with Cr(III), Cu, and Zn by Sorption on the Organic Polymeric Fraction of Olive Mill Wastewater (Polymerin) and Its. Derivatives. Environ. Sci. Technol. 38: 5170-5176. (2004).
- 8) Chen, C.; Wang, J. Influence of metal ionic characteristics on their biosorption capacity by Saccharomyces cerevisiae. Appl Microbiol Biotechnol. 74:911–917. (2007).
- Chen, J. P.; Yang, L. Chemical Modification of Sargassum sp. for Prevention of Organic Leaching and Enhancement of Uptake during Metal Biosorption. Ind. Organic Eng. Chem. Res. 44: 9931-9942. (2005).
- 10) Chen, J. P.; Yang, L. Study of Havy Metal Biosortion onto Raw and Chemically Modified Sargassum sp. via Spectroscopic and Modeling Analysis. Langmuir 22: 8906-8914. (2006).
- 11) Chen S.; et al. Adsorption of Pb(II) and Cd(II) by Squid Ommastrephes bartrami Melanin. Bioinorganic Chemistry and Applications. 1-7. (2009).

- Chojnacka K. Bioaccumulation of Cr(III) ions by Blue-Green alga Spirulina sp. Part I. A Comparison with Biosorption. American Journal of Agricultural and Biological Sciences 2 (4): 218-223. (2007).
- Das, N.; Vimala, R.; Karthika, P. Biosorption of heavy metals-An Overview. Indian Journal of Biotechnology 17: 159-169. (2008).
- 14) Davis T. A.; et al. A review of the biochemistry of heavy metal biosorption by brown algae. A review of the biochemistry of heavy metal biosorption by brown algae 37: 4311–4330. (2003).
- 15) Dean J. A. Lange Manual de Química. 13 Edición. Mc Graw-Hill. (1999).
- Dodic, S. N.; Popov, S. D.; Markov, S. L. Investigation of Kinestics of zinc Biosorption by Saccharomyces Cerevisiae Cell. Nahrung/Food. 45 (1): 59-61. (2001).
- Evans G. M.; Furlong J. C. Enviromental Biotechnology Theory and Application. John Wiley & Sons, Ltd. England. 143-171. (2003).
- 18) Ezzouhri, L.; Castro, E.; Moya, M.; Espinola, F.; Guerrouj, M.; Rossi, B.; Lairini, K. Uptake of Lead by *Saccharomyces cerevisiae* Isolated from Tangier Brewery Wastewater. Europan Journal of Scientific Research. 19 (4): 113-126. (2008).
- 19) Farkas, V. (1979). "Biosynthesis of Cell Walls of Fungi." Microbiological Reviews 43(2): 117-144.
- 20) Ferraz A. I.; *et al.* The use of flocculating brewer's yeast for Cr (III) and Pb (II) removal from residual wastewaters. Bioprocess Engineering. 21: 431-437. (1999).
- Garza M. T.; Coto O. Aislamiento de Microorganismos con alta capacidad de tolerar y remover Pb(II), Cr(VI), Cd(II), Cu(II), Zn(II) y Ni(II). Universidad de la Habana, Facultad de Biología. (2005).
- 22) Hadi, B.; Margaritis, A.; Berruti, F.; Bergougnou, M. Kinetics and Equilibrium of Cadmium Biosorption by Yeast Cell S. Cerevisiae and K. Fragilis. International Journal of Chemical Reactor Engineering 1(47): 1-16. (2003).
- 23) Hashim M. A.; *et al.* Biosorption of Cadmium by brown, green, and red seaweeds. Chemical Engineering Journal. 97: 249-255. (2004).
- 24) Kargi F.; *et al.* Kinetics of Zinc (II) ion Biosorption onto Powdered Waste sludge (Pws) at Different Operating Conditions. Environmental Engineering Science. 24: 687-695. (2007).
- 25) Kim T. Y.; *et al.* Adsorption of Heavy Metals by Brewery Biomass. Korean J. Chemical Enginnering 22: 91-98. (2005).
- 26) Kollar R.; *et al.* Architecture of the Yeast Cell Wall. β(1-6)-Glucan Interconnects Mannoprotein, β(1-3)-Glucan, and Chitin. The Journal of Biological Chemistry. 272 (28): 17762–17775. (1997).
- 27) Limousin, G.; Gaudet, J. P.; Charlet, L.; Szenknect, S.; Barthe, V; Krimissa, M. Sorption isotherms: A review on physical bases, modeling and measurement. Applied Geochemistry 22: 249–275. (2007).

- 28) Lipke P. N.; Ovalle R. Cell Wall Architecture in Yeast: New Structure and New Challenges. Journal of Bacteriology. 180 (15): 3735–3740. (1998).
- 29) Liu; N.; Liao, J.; Luo, S.; Yang, Y.; Jin, J.; Zhang, T.; Zhao,; P. Biosorption of 241Am by immobilized Saccharomyces cerevisiae. Journal of Radioanalytical and Nuclear Chemistry. 258 (1): 59-63. (2003).
- 30) Michalak I.; *et al.* Biosorption of Cr(III) by Microalgae and Macroalgae: Equilibrium of the Process. American Journal of Agricultural and Biological Sciences 2 (4): 284-290. (2007).
- 31) Monge, O.; Valenzuela, J. L.; Acevedo, E.; Certucha, M. T.; Almendráis, F. J. Biosorción de cobre en sistema por lote y continuo con bacterias aerobias inmovilizadas en zeolita natural (Clinoptilolita). Rev. Int. Contam. Ambient. 24 (3): 107-115. (2008).
- 32) Muñoz, J. C.; Tapia, N. Biosorción de Plomo (II) por cáscara de naranja "Citrus Cinensis" pretratada. Facultad de Química e Ingeniería Química. E. A. P. de Química. Lima Perú. (2007).
- 33) Muñoz T. M. C.; et al. Remoción de metales pesados en aguas residuales utilizando una macrófita acúatica (eleocharis acicularis) muerta. Facultad de Ciencias Químicas. Universidad Autónoma de Querétaro. (2007).
- 34) Naeem, A.; Woertz, J. R.; Fein, J. B. Experimental Measurement of Proton, Cd, Pb, Sr, and Zn Adsorption Onto the Fungal Species *Saccharomyces Cerevisiae*. Environ. Sci. Technol 40: 5724-5729. (2006).
- 35) Navarro, A. E. Ramos, K. P.; Campos, K.; Maldonado, H. J. Elucidación del Efecto del pH en la Adsorción de Metales Pesados mediante Biopolímeros Naturales: Cationes Divalentes y Superficies Activas. Revista Iberoamericana de Polímeros. 7 (2): 113-126. (2006).
- 36) Navneet, J. Biosorption of heavy metals. Thapar Institute of Engineering and Technology Patiala. (2003).
- 37) Nilanjana D.; *et al.* Biosorption of heavy metals-An overview. Indian Journal of Biotechnology. 7: 159-169. (2008).
- 38) Oliveira, www.cybertesis.edu.pe/sisbib/2003/oliveira_mj/html/index-frames.html.
- Parvathi, K.; Nagendran, R. Biosorption of Chromium from Effluent Generated in Chrome-Electroplating Unit using *Saccharomyces cerevisiae*. Separation Science and Technology. 42: 625-638. (2007).
- Parvathi, K.; Nareshkumar, R.; Nagendran, R. Biosorption of manganese by Aspergillus niger and Saccharomyces cerevisiae. World J Microbiol Biotechnol. DOI 10.1007/s11274-006-9281-7. (2006).
- 41) Park D., Y.-S. Y., and Jong Moon Park3 (2010). "The Past, Present, and Future Trends of Biosorption." Biotechnology and Bioprocess Engineering 15: 86-102.
- 42) Pavasant, P., R. Apiratikul, et al. Biosorption of Cu2+, Cd2+, Pb2+, and Zn2+ using dried marine green macroalga caulerpa lentillifera. Bioresource Technology 97(18): 2321-2329. (2006).
- 43) Peng, T. Y.; Koon, T. W. Biosorption of Cadmium and copper by Sacchoromyces cereviciae. Microbial utilization removable resources. 8: 494-504. (1993).

- 44) Regine, H. S. F.; Volesky, B. Biosorption: a solution to pollution. Int. Microbiol. 3: 17-24. (2000).
- 45) Rivera-Ingraham G. A.; *et al.* Presence of Caulerpa racemosa (Forsska°I) J. Agardh in Ceuta (Northern Africa, Gibraltar Area). Biol Invasions. 12:1465–1466. (2010).
- 46) Rodriguez F. A.; *et al.* Tratamientos avanzados de aguas residuales industriales. www.madrimasd.org.
- 47) Rodríguez, M. E.; Evaluación del proceso de bioadsorción de Pb²⁺, Cd²⁺ y Cr³⁺ mediante biomasa residual libre e inmovilizada. (2008).
- 48) Saikaew W.; Kaewsarn P.; Saikaew W. Pomelo Peel: Agricultural waste for biosrption of Cadmium ions from aqueous solutions. Engineering and Technology. 56: 287-291. (2009).
- 49) Scott, J. A.; Palmer, S. J. Sites of cadmium uptake in bacteria used for biosorption. Appl. Microbiol. Biotechnol., 33: 221-25. (1990).
- Sheng, P. X.; Ting, Y.; Chen P. Biosorption of Heavy Metal lons (Pb, Cu, and Cd) from Aqueous Solutions by the Marine Alga Sargassum sp in Single- and Multiple Metal Systems. (2007).
- 51) Songklana K. et al. J. Sci. Technol. 26: suppl. 1. (2004).
- 52) Vinopal, S.; Ruml, T.; Kotrba, P. Biosorption of Cd2+ and Zn2+ by cell surface-engineered Saccharomyces cerevisiae. International Biodeterioration & Biodegradation. doi:10.1016/j.ibiod.2006.12.00. (2007).
- 53) Volesky B.; et al. Separation of uranium by biosorption. (1982)
- 54) Volesky, B.; Holan, A.; May-Philips. Biosorption of Heavy Metals by Saccharomyces cerevisiae. Appl. Microbio. and Biotech. 42 (5): 797-806. (1995)
- 55) Wang, J.; Chen, C. Biosorption of heavy metals by *Saccharomyces cerevisiae*: A review. Biotechnology Advances 24: 427–451. (2006).
- 56) Wang, J.; Junteng, X.; Wang, H.; Ban, d. Characterizing the Metal Adsorption Capability of a Class F Coal Fly Ash. Environ. Sci. Technol 38, 6710-6715. (2004).
- 57) Wang, J. Process Biosorption of copper(II) by chemically modified biomass of Saccharomyces cerevisiae. Biochemistry 37: 847–850. (2002).
- 58) Ying C. P. Biosorption of copper(II) and chromium(VI) onto activated sludge : isotherms and kinetic models. Universiti Sains Malaysia (2007).