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Greek letter

ǫ
c composite material strain tensor, see equation (2.1), page (19) .

ε
f
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f-th fiber extensional strain, see equation (2.1), page (19) .

ǫ
m matrix strain tensor, see equation (2.1), page (19) .

γ
f
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f-th fiber shear strains, see equation (2.1), page (19) .
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f
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f-th fiber shear strains, see equation (2.1), page (19) .

ν
m matrix Poisson´s ratio, see equation (1.8), page (7) .

ρ
c
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mass of the composite, see equation (1.8), page (7) .

Σ(ǫc) constitutive function returning the composite stress in terms of the composite strains, see equa-

tion (1.8), page (7) .

Latin letter

b
c(x, t) composite body forces vector, see equation (1.8), page (7) .

r
f f-th orthogonal reference system component, see equation (2.1), page (19) .
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t
f f-th orthogonal reference system component, see equation (2.1), page (19) .

u displacements, see equation (1.8), page (7) .

u
∗ prescribed displacements, see equation (1.8), page (7) .
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Introduction

While many engineering problems can be treated in just two dimensions, some complex situations demand

full three-dimensional analysis. Nowadays, with the advance in material research and the rapid progress in

computer machines, three-dimensional analysis can be performed within affordable time and numerical cost. In

this dissertation, a recent development in full three-dimensional analysis for reinforced concrete (RC) members

is presented, which is an important step towards the development of versatile computational tools to model

complex material behaviors.

The main concepts in constructing a three-dimensional RC tetrahedron are similar to the two-dimensions

alone, which is idealized as a composite material consisting of plain concrete with reinforcement to be superim-

posed, by combining the constitutive laws expressed in terms of average stress and average strain of concrete

and reinforcement. On the other hand, the numerical analysis of material failure, applied to RC members,

represents an important tool for the safety estimation of engineered structures.

Despite of the considerable effort of more than four decades of research, in the numerical analysis of RC

structural members, such as slabs, beams, columns and footings, they still present a challenge to the scientific

community. These structural members are subjected to complex loading combinations. Section forces such as

axial and bending moments induce longitudinal stresses, while shear forces and torsion moments induce shear

as well as normal stresses due to diagonal cracking. The simultaneous action of both types of loading induces

a complex stress-state, requiring the consideration of the interaction between normal and shear stresses. This

complex interaction problem is the main topic of this dissertation.

The lack of reliability in predictions and the fact that the model parameters often have to be adapted to the

structure, in order to obtain a good agreement with experimental data, has motivated the search for improved

models of RC structural members.

Many questions are still unsatisfactorily answered and are been currently discussed inside the research

community. The numerical modeling of the RC members probably started in the late 60s and early of the 70s,

with the seminal works by Rashid [62], Ngo and Scordelis [55], Evans and Marathe [28] .

The complexity of RC analytical models, which arises when attempting to model a quasi-fragile material

(plain concrete), and a ductile material (steel bars), leads to a combination of highly non-linear effects, as well

as the description of failure processes in this cohesive-frictional material equipped with longitudinal steel bars at

bending and steel stirrups at shear, which are characterized mainly by strain-softening phenomena (documented

by Nádai 1931 in his seminal monograph of plasticity [53]), multiple cracking (in traction) and crushing (in

compression), among others.

The constitutive equation of RC is an essential ingredient of any structural calculation. It provides the

indispensable relation between strains and stresses, which is a linear relation in the case of elastic analysis and

a much more complex nonlinear relation in nonlinear analysis, when the fracture processes comes into play,

involving time and additional internal variables. In this dissertation we limit ourselves mainly to considering

the "Continuum" mechanics approach, i.e., the Representative Volume Element (RVE) of material is considered

as subject to a near-uniform macroscopic stress.

This Continuum assumption is equivalent to neglecting the local heterogeneity of the stresses and strains

within the RVE, working with averaged quantities, as the effects of the heterogeneities, ignoring the effects

of the aggregates (fragility or hardness),or the relationship between cement and water and aggregates. These

materials require, constitutive laws with a decreasing stress under increasing strain, in the zone where inelastic

processes appear. It is well known that, these structural members have a stable growth of multiple cracking,

before the maximum pick-load is reached.

Unfortunately, because of this type of numerical response, it is a major task in science, not to mention the

numerical treatment, to obtain the mechanical behavior post-pick-load. Several constitutive models have been

proposed in the literature for various RC behaviors, and with different levels of numerical sophistication.
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4 1. Introduction

Most of these phenomenological models treat concrete as a homogeneous single phase material (Damage

theories, see e.g. Carol and William [7], Chaboche [8, 9], Chow and Wang [11], Cordebois and Sidoroff [15],

Costin [16], Davidson and Stevens [17], Dougill [22], Dragon and Mróz [23], Han and Chen [34], Hueckel

and Maier [35], Ju [37], Kachanov [38], Krajcinovic and Fonseka [39], Ladevéze [40], Lubarda et al. [42],

Maier and Hueckel [43], Mazars and Lemaitre [45], Mazars and Pijaudier-Cabot [46], Ortiz [59], Simo and Ju

[65, 66], Suaris and Shah [68], Yazdani and Schreyer [72] ). Many questions are still unanswered, as regards

reinforced concrete behavior. However, various publications on plain concrete, based on plasticity, have been

proposed in the last three decades, through different approaches, such as, the works by [Menétrey and William

[49], Etse [27], Feenstra [29], Pramono and William [61], Menétrey et al. [48], Feenstra et al. [30], Grassl

et al. [32] ].

Unfortunately, the complex failure process in reinforced concrete, is characterized by stiffness degradation

and irreversible deformation, whereby, a combination of stress-based scalar damage and plasticity, can be found

in [Willam and Warnke [71], Meschke et al. [50], Bielger and Mehrabadi [6], Lee and Fenves [41], Grassl and

Jirásek [31], Mohamad Hussein and Shao [52], Cicekli et al. [13], Chiarelli and Shao [10], Contrafatto and

Cuomo [14], Červenka and Papanikolaou [69], Jason et al. [36] ].

Several formulations also exist, based on micro-mechanics [Mattei et al. [44], Christoffersen et al.

[12], Mehrabadi et al. [47], Nemat-Nasser and Mehrabadi [54], Oda et al. [56] ]. The approach based on micro-

planes, Bažant et al. [5, 2] , is very similar to the approach developed in the literature on micro-mechanics de-

scriptions of granular materials, with the difference that they act only indirectly through a certain number of "in-

ternal variables". Moreover, in the framework of the "local state" assumption of Continuum Thermo-mechanics,

it is considered that the state of a material point (and of its immediate vicinity in the sense of the RVE) is

independent of that of the neighboring material point.

Therefore the stress strain gradient does not enter into the constitutive equation. These assumptions are

obviously questioned in recent theories and congresses on "Continuum Mechanics", although these theories are

not addressed here. Moreover, another formulation the so-called the “smeared approach” ((which treats the

cracked material as an equivalent continuum) [Rice [63], Bažant and Oh [3], Červenka and Gerstle [70], De-

Borst [18], Rots and Blaauwendraad [64] ] can be found in the literature. Apparently [Barenblatt [1], Dugdale

[24], Rashid [62] ] were pioneer in the field of cohesive crack models.

Alternatively, Eringen [25, 26] and Bažant and Pijaudier-Cabot [4], Pijaudier-Cabot and Bažant [60]

proposed a nonlocal plasticity and damage model respectively. In the 90‘s, various enhanced constitutive models,

were proposed, among which, gradient-enhanced models stand out [DeBorst and Mühlhaus [21], Mühlhaus

and Aifantis [51] ], Cosserat continua [DeBorst [19], Steinmann and William [67] ]. It is well known that, the

numerical simulation of reinforced concrete behavior, many leads to some difficulties, due mainly to high strain

localization, which corresponds to multiple crack formation, this usually ocurrs when the maximum tensile or

compressive strength of the plain concrete are exceeded in some material points of the structural member.

This phenomenon is commonly denoted as localization of deformation, and has been documented by a

wide range of authors, and is mainly the responsible for the loss of ellipticity, the lack of invariance with respect

to the spatial discretization and the need for enhanced continuum models to overcome this problem.

The mathematical and numerical implications of this phenomenon can be found in DeBorst [20] , as well

as an overview and references to this topic. We conclude this short introduction with the following idea, there

are good reasons to believe that, in this century, the scientific community will find a good constitutive and com-

putational modeling for reinforced concrete in order to overcome, the mixture of highly non-linear effects, such

as, mathematical deficiency, i.e., the so called´´ill-posed proble´´; nonlinear effects in the interface between

plain concrete and steel bars; multiple crushing in the structural members, multiple cracking in traction; non-

linear shear effects, and the correct instant of bifurcation, among others, and thus be able to find a responding

complex structural members.

1.1 The fracture process in members of reinforced concrete

It is commonly accepted that the characterization to obtain the zone where the fracture process occur

it is made through a specific transition between the materials that make up the continuum media. Typically,

the contact surface between a quasi-brittle material like concrete a plastic material, like steel bars, make the

By: Guillermo Fernando Díaz Ortíz.



1.1. The fracture process in members of reinforced concrete 5

behavior of this zone highly nonlinear. On the one hand, we characterize the matrix in tensile stress regimes by

a progressive softening, for which the stress decreases with increasing deformation

As shown in Oliver et al. [58] , the formation process of a strong discontinuity can be modeled as a weak dis-

continuity that collapses into a strong discontinuity at a certain time during the deformation process. However,

the key question is: what happens when the steel bars form a cage, generating a confined core in the structural

member? Because if the core is subjected to high compression states, the strong discontinuity generated by the

states of tension cannot evolve. (See Fig.(1.1)).

Figure 1.1: Failure process of a structural member of reinforced concrete. a) Dimensions and geometry. b) Numeric

representation and c) Schematic of the mechanical behavior in a failure state

The motivation of this research is oriented towards obtaining a numerical composite model that is

both robust and stable, and providing a numerical answer in failure states of a RC structural member

subjected to high compression states. For this purpose, we use the classical equations of the quasi-static

boundary value problem, but incorporating two extra equations of continuity, as shown in the following two

sections.

1.1.1 Boundary value problem for composite material. Multi-field format

When localization of deformation, or “strain localization” in reinforced concrete, is modeled with a standard,

inviscid reinforced concrete continuum model, a change occurs in character of the set of differential equations

describing the motion and deformation of the continuum media. Attempts to capture the crack in reinforced

concrete and other localization phenomena via numerical methods started in the 80s.

. The solution appeared to be linked to the fineness and the direction of the discretization of the mesh, However,

Copyright c© 2013 Universidad Autónoma de Nuevo León.
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6 1. Introduction

the main reason seemed to consist in the loss of ellipticity of the set of partial differential equations for the quasi-

static case. In this case, the rate boundary value problem was ill-posed and numerical solutions suffered from

spurious mesh sensitivity. To remedy this problem, one must either introduce additional terms in the set of

differential equations governing the problem.

The main idea is then that the enhanced continuum model should reflect the micro-structural changes that

occur when a material is stressed close to its failure limit. This prevents these equations from changing type

during the loading process, and enables physically meaningful solutions to be obtained for the entire loading

process. However, at least two out of four elements are needed to describe the kinematics of the localization

zone properly, not to mention the fineness of the mesh required to capture the reinforcing bars. When attempting

to model RC structural members, the required number of elements may become prohibitively large. With this

argument in mind, we begin our work with the introduction of the basic notation, and briefly discuss the

governing equations for a continuous body with discontinuity in a field of displacements.

1.1.2 Traction continuity

Let us also denote ǫc
Ω�S
= ǫc |x∈Ω�S, σ

c
Ω�S
= σc |x∈Ω�S and ǫc

S
= ǫc |x∈S, σ

c
S
= σc |x∈S, as the composite strains

and stresses at the continuous bulk of the body and in the discontinuous interface S, respectively. The key

point in the mechanics of fracture through the continuum mechanics is that we need to postulate the traction

continuity across the discontinuity interface S.The total and rate form of the traction vector can be stated the

following manner:

σc
Ω+�S

.n= σc
Ω−�S

.n= σc
S
.n= T(x, t) ∀x ∈ S∧∀t[0,∞]

σ̇c
Ω+�S

.n= σ̇c
Ω−�S

.n= σ̇c
S
.n= Ṫ(x, t) ∀x ∈ S∧∀t[0,∞] (1.1)

in which σc
Ω+�S

= σc
Ω�S
|x∈∂Ω+∩S and σc

Ω−�S
= σc

Ω�S
|x∈∂Ω−∩S are considered. In Eq. (1.1), σc

S
and σ̇c

S
are the

total and rate form of the composite stress at a given material point of the discontinuous interface S and σc
Ω+�S

and σc
Ω−�S

are the composite stresses at a neighbor point on the continuum part of the body Ω+�S and Ω−�S,

respectively. Before addressing crack models, we begin with a brief explanation of one of the most interesting

phenomena that occurs in part of the plain and reinforced concrete members.

1.1.3 Composite governing equations

For the infinitesimal strain, rate=independent case, the problem can be stated as follows: consider a body

formed by material points occupying a domain (Ω), with boundary ∂Ω = Γu ∪ Γσ (where Γu is the part of the

boundary with prescribed displacements and Γσ is the part of the boundary with prescribed tractions). The

rate form of the governing equations describing the boundary value problem of composite material, in a time

interval [0, T], can be written as:

By: Guillermo Fernando Díaz Ortíz.



1.1. The fracture process in members of reinforced concrete 7

Box 1.1: Quasistatic boundary value problem (BVP) for the composite material.

Find:










u̇(x, t)

ǫ̇
c(x, t)

σ̇
c ,(x, t)

Satisfying:

∇.σ̇c +ρc
o
ḃc = 0 ∀(x, t) ∈ Ω/S × [0, T] Internal equilibrium (1.2)

ǫ̇c −∇
su̇= 0 ∀(x, t) ∈ Ω × [0, T] Kinematical compatibility (1.3)

σ̇c − Σ̇(ǫc) = 0 ∀(x, t) ∈ Ω × [0, T] Constitutive compatibility (1.4)

σ̇c.n= ṫ∗ ∀(x, t) ∈ Γσ × [0, T] External equilibrium (1.5)

u̇= u̇∗ ∀(x, t) ∈ Γu × [0, T] Prescribed displacement (1.6)

σ̇c
Ω+

.n− σ̇c
Ω−

.n= 0 ∀(x, t) ∈ S × [0, T] Outer traction continuity (1.7)

σ̇c
Ω+

.n− σ̇c
S
.n= 0 ∀(x, t) ∈ S × [0, T] Inner traction continuity (1.8)

where ρc
o

is the mass of the composite, bc(x, t) is the composite body forces vector, t∗ is the prescribed trac-

tion vector, n is the outward normal, Σ(ǫc) stands for the constitutive function returning the composite stress

in terms of the composite strains ǫc , and finally, u and u∗ are the displacements and prescribed displacements,

respectively, as in Fig.(1.2) . [See Remark 1.1 ]

Figure 1.2: Boundary value problem

Remark 1.1 After explicit imposition of Eq. (1.4) in to Eqs.(1.2),(1.7) and (1.8) , the typical two field (u and

ǫc) problem can be rewritten. See Oliver et al. [57] .

The Eqs. (1.2) to (1.4) represent the governing equations for composite materials (solids) without discon-

tinuities. The outer traction continuity Eq. (1.7) may also be expressed as:

Jσ̇c
Ω
K≡ σ̇c

Ω+
.n− σ̇c

Ω−
.n= 0 ∀(x, t) ∈ S× [0, T] (1.9)

From now on, the symbol J•K := •+ −•− denotes the jump of an arbitrary quantity across S.

Copyright c© 2013 Universidad Autónoma de Nuevo León.
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8 1. Introduction

Remark 1.2 The function spaces for u̇(x, t), ǫ̇c(x, t) and σ̇c ,(x, t) are assumed to be defined in such a way that

the Dirichlet type boundary conditions are automatically fulfilled.

1.2 Strain localization

One of the most important questions in fracture mechanics applied to reinforced concrete members is un-

doubtedly, when, how, and where does the inelastic process of the strains occur? And under what conditions

can the inelastic strain increments localize in one or more narrow bands, separated from the remaining part of

the body by the weak discontinuity surface?

The answer to this is far from straightforward. What we know is that we can simulate numerically the strain

field through the displacement field by maintaining it continuous, and so obtain the strain field with a jump.

Once again, this is not straightforward. However, this issue has been studied over the last 20 years, thanks to

which mathematical foundation and researchers̀ experience have been improving steadily.

Some research groups around the world are currently developing formulations to capture the phenomenon of

strain localization, and are obtaining satisfactory responses when trying to compare experimental vs. numerical

results. The onset of the inelastic process of the strains may be accompanied by the formation of bands of in-

tense straining; the current strains can be still continuous and the jump appears only in the strain rate.

Let us now determine the necessary conditions for the existence of such a solution. Typically, by using the clas-

sical localization analysis developed by Hadamard [33] , one material point xs of the discontinuous surface Γs

can be loss of strain continuity. For convenience, let us also consider that the surface splits the body into two

sub-domains Ω+ and Ω− (see Fig.(1.3)).

Figure 1.3: Corbel of reinforced concrete split by a discontinuity surface

According to Hadamard, if the point xs is approached from Ω+or from Ω− (denoted by superscripts + and −

on both sides of the discontinuity surface), certain fields that are discontinuous across Γs tend to different limits,

for instance σ̇+ and σ̇− denotes the stress rate on both sides of the discontinuity surface just next to point xs

respectively. Even though the stress and the strain rate can be discontinuous across a discontinuity surface, the

corresponding jumps are not completely arbitrary. This is because the traction continuity condition constrained

the stress rate jump. The same applies to the strain rate jump, which is limited by the displacement continuity

condition. As defined in Hadamard [33] , the structure of the traction continuity condition can be written as

follows:

n · σ̇+ = n · σ̇− (1.10)

By: Guillermo Fernando Díaz Ortíz.
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1.2. Strain localization 9

where n is the unit vector normal to Γs. In order to define the displacement continuity condition in terms of

strain rates, let us define the continuous projection onto the cracks discontinuity surface, by employing a spatial

gradient of a given displacement component, in the following manner:

[
∂ u̇

∂x

]+

=

[
∂ u̇

∂x

]−

+ r⊗n (1.11)

where r is an arbitrary vector and taking the form of r = β̇m. The magnitude of the jump β̇ = ‖r‖ can be

defined in terms of the unit first-order polarization tensor or normalized:

m=
r

‖r‖
(1.12)

implicitly holding the failure modes. By exploiting the symmetry of the strain tensor in the regime of small

deformations, is straightforward to arrive at the displacement continuity condition in terms of strain rates as

follows:

ǫ+ = ǫ− + β̇(m⊗n)s ym (1.13)

With all information given in this section, we can now begin to answer the questions posed at the beginning.

To this end, we use the bifurcation analysis. First of all, we must obtain some expression that allows us to

determinate the instant when the moment of fracture occurs. To this end, let us employ the following stain-

stress equation:

σ̇+ = C+
Tan

ǫ̇+ (1.14)

σ̇− = C−
Tan

ǫ̇− (1.15)

In which C+
Tan

and C−
Tan

are the constitutive tangent operators on both sides of the discontinuity surface.

Substituting the previous expressions into Eqs.(1.10) and (1.13) we obtain:

n ·C+
Tan

: ǫ− +
[
n ·C+

Tan
: (m⊗n)s ym

]
β̇ = n ·C−

Tan
: ǫ− (1.16)

n ·
[
C+

Tan
−C−

Tan

]
: ǫ− = −β̇

[
n ·C+

Tan
·n

]
·m (1.17)

thereby obtaining a general expression to describe a simple weak discontinuity. We analyzed the expression

Eq. (1.17) . If the constitutive tangent operators are equal, the left hand side of this expression is zero, and a

true discontinuity is obtained only with β̇ 6= 0. Then the previous equation we can be reduced as follows:

[
n ·C+

Tan
·n

]

︸ ︷︷ ︸

Q

·m= 0 (1.18)

where the term in brackets is called the acoustic tensor. Since from a mathematical point of view, the

singularity of this tensor (the acoustic or more precisely the localization tensor) indicates loss of ellipticity in

quasi-static problems. Here the singularity of the localization tensor and the polarization unit first-order tensor

m, is its eigenvector associated with eigenvalue zero. The classical localization condition now takes the form:

det(Q) = 0 (1.19)

Copyright c© 2013 Universidad Autónoma de Nuevo León.
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So, the key idea is to investigate when this condition ocurrs; by searching for a unit vector n for which the

localization tensor becomes singular. The aim of the bifurcation analysis, is to find a unit vector nfor which

the localization tensor becomes singular. It is noteworthy that, on the one hand if this vector n does not exist,

the strains must remain continuous, and on the other hand, if we find a vector n that meets the condition of

localization, this indicates that a strain jump can develop across a surface with normal n. It is also important to

mention that, if we explore Eq. (1.18) in deep, the acoustic tensor is a function of constitutive tangent operator.

As we shall see later, this operator can be enriched in order to model material points of reinforced concrete.

1.3 Structure of the thesis

This work is structured into 4 chapters. An outline of the rest of the work is as follows: In Chapter 2 the

fundamentals of strong discontinuity methodology applied to composite materials are given. The notions, of

weak and strong kinematics, as well as a numerical technique of regularized kinematics of discontinuity applied

to the composite material are given, but unlike of previous works by the author, the displacement field is

enrich to capture multiples surfaces of strong discontinuities. The Obtain the composite discrete traction vector

employee during this work, as well as the strong discontinuity conditions applied in the composite material are

resolved in Chapter 3. Chapter 4 is devoted to a summary of the results obtained and to the concluding remarks.

Possible extensions and improvements close out the thesis.
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2

Strong discontinuities applied to composite materials

T
HE main goal of the present chapter is the introduction of the kinematic of the multiple surface discontinuity,

for project the dissipative composite constitutive model, equipped with strain softening, (on the part of the

matrix), into a discrete traction-separation law, to fulfill the condition of the strong discontinuity applied in the

composite materials.

2.1 A concise review of the fundamentals applied to the composite material

The aim of strong discontinuity analysis applied to composite materials is to identify those conditions that

make the constitutive models using in previous works, make compatible with the strong discontinuity kinematic

Mosler [9] . So, in order to fulfill these conditions, the remainder of this section is structured as follows:

the original strong discontinuity kinematics applied to composite materials, as well as a weak kinematics are

introduced in Section(2.1.2) . The reader interest in know how change from the weak to strong discontinuities,

please see Oliver et al. [12] . Before describing the kinematics, let us define the composite strains through a

simple assumption, using the mixture theory Atkin and Craine [2], Bowen [3], Eringen and Ingram [4], Ingram

and Eringen [7], Green and Naghdi [6], Truesdell and Noll [19], Truesdell and Toupin [20] as follows:

2.1.1 Basic assumption for the composite material

It is assumed that all components share the same strains in Fig.(2.1) (compatibility concept or closing

equation), that is:

ǫm = αǫc

ε f
r r
= (η)r f .ǫc .r f

γ f
rs
= (η)2r f .ǫc .s f

γ f
r t
= (η)2r f .ǫc .t f (2.1)

In Eq. (2.1) , ǫm and ǫc are the matrix and composite material strain tensor, respectively. This assumption

is valid in the absence of atomic diffusion. The extensional strain of the f-th fiber ε f
r r

, in direction r f is equal

to the component of the composite strain field in that direction. In a local orthogonal reference system
(
r f ,

s f , t f
)
, the shear strains of the f-th fiber γ f

rs
and γ f

r t
are obtained as the shear components of the composite

strain field, finally α and η are the parameters to try to discriminate the deformation that corresponds to each

component.

19
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Figure 2.1: Composite material

2.1.2 Kinematics induced through strong discontinuities in composites materials

This section is concerned with the kinematics used in the composite material. Let us begin by establishing

the kinematical relations for the non-linear composite model and their appropriate composite strain. We start

by defining the fundamentals, accompanied by weak and strong discontinuities in order to establish the regu-

larized kinematics of discontinuity in composite materials. It is important to define the kinematics of this mode

(regularized kinematics), since allow introduce in a natural manner into the composite constitutive model.

2.1.2.1 Fundamentals

This section, consists of a short review of the fundamentals of the kinematics induced by strong disconti-

nuities: for further details, refer to Simo et al. [18], Garikipati [5], Oliver [10, 11], Manzoli [8], Oliver et al.

[12], Armero [1], Oliver et al. [15, 16, 17], Oliver and Huespe [14, 13] .

Let us consider a three-dimensional body Ω ⊂ R3 § (more precisely, an open bounded set) assumed to be

separated into two parts (Ω+ and Ω− through a ΓS ) whose material points are labeled as x, and a material

(fixed along time) surface S † in Ω. Let us also consider an orthogonal system of curvilinear coordinates ξ,η

and χ , such that S corresponds to the coordinate surface

S :=
{
x(ξ,η,χ) ∈ Ω | χ = 0

}
(2.2)

In turn we can obtain the orthonormal base associated to that system of coordinates by (êξ, êη, êχ) , and

finally we define the corresponding scale factors rξ(ξ,η,χ), rη(ξ,η,χ) and rχ(ξ,η,χ) such that:

dSξ = rξdξ

dSη = rηdη

dSχ = rχdχ (2.3)

are the differential arc lengths along the coordinates surface ξ,η respectively. We also follow the guidelines

of the work by Manzoli [8] (See also Oliver et al. [12] , Fig.(2.2) and Remark 2.1 ). Here we extend the

definition of bandwidth from 2D to 3D in Eq. (2.5):

h(ξ,η) = rχ(ξ,η,χ)(χ+ −χ−) (2.4)

§The configuration occupied by a solid reference placement in Ω0 ⊂ R
3 is denoted by X.

†which from now on will be called discontinuity surface.

By: Guillermo Fernando Díaz Ortíz.
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Remark 2.1 Let us consider the surfaces S+
χ

and S−
χ

, which coincide with the coordinates χ = χ+ and χ = χ−,

enclosing a discontinuity band

Ωh :=
{
x(ξ,η,χ) | χ ∈ (χ+,χ−)

}
(2.5)

The introduction of these bandwidths induces a partition

Ω = Ω+ ∪Ω− ∪ Γu ∪Γσ ∩Ω
h (2.6)

W
+

W
-

n

s

ss+ s-

n

W
+

W
-

W
h

Figure 2.2: Bandwith of strain localization

2.1.2.2 Kinematics of weak discontinuities

The kinematics of a body Ω Fig.(2.2) containing a discontinuity (jump) of value Ju̇K(x, t) in the rate of the

displacement field can be described in Eq. (2.7) .

u̇(x, t) = ˙̄u(x, t) +

Ns∑

β=1

H
β

Ωh(x, t)Ju̇Kβ (x, t) (2.7)

where ˙̄u(x, t) and Ju̇K(x, t), are the regular resulting velocity and the velocity jump respectively, β is the

surface of failure in study, Ns is the active localization surface(being the great difference with previous works).

HΩh is the unit ramp function and is a continuous function in Ω defined by:

H
β

Ωh :=







0 x ∈ Ω− χ ≤ χ−

1 x ∈ Ω+ χ ≥ χ+

χ −χ−

χ+ −χ−
x ∈ Ωh χ− < χ < χ+

(2.8)

In the Eq. (2.8) H
β

Ωh contains a unit jump, different from its values at S+ and S− for the same coordinate

surface ξandη:

χJH
β

ΩhK= H
β

Ωh(ξ,η,χ+)−H
β

Ωh(ξ
,η,χ−) = 1 ∀ξ∧∀η (2.9)

The gradient of H
β

Ωh is given in orthogonal curvilinear coordinates by:

Copyright c© 2013 Universidad Autónoma de Nuevo León.
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∇H
β

Ωh =
∂ Hβ

∂ ξ

∂ ξ

∂ Sξ

∂ Sξ

∂x
+
∂ Hβ

∂ η

∂ η

∂ Sη

∂ Sη

∂x
+
∂ Hβ

∂ χ

∂ χ

∂ Sχ

∂ Sχ

∂x

=
1

rξ

∂H
β

Ωh

∂ ξ
êξ +

1

rη

∂H
β

Ωh

∂ η
êη +

1

rχ

∂H
β

Ωh

∂ χ
êχ

= µ
Ωhβ

1

hχ
êβ
χ

(2.10)

where µΩh is a collocation function, defined as:

µ
Ωhβ :=

{

0 x /∈ Ωh

1 x ∈ Ωh
(2.11)

Finally, we can obtain the kinematic compatible with the rate of strains of the composite ǫc as follows:

ǫ̇c =∇su̇=∇s ˙̄u+

Ns∑

β=1

H
β

Ωh∇
sJu̇K(x, t) +

Ns∑

β=1

Ju̇K(x, t)∇sH
β

Ωh

=∇s ˙̄u+

Ns∑

β=1

H
β

Ωh∇
sJu̇K(x, t)

︸ ︷︷ ︸

˙̄ǫ
c

regular ∀(x)∈Ω/S

+

Ns∑

β=1

µΩh

1

hχ
(Ju̇K(x, t)⊗ êχ)

s

︸ ︷︷ ︸

Jǫ̇cK discontinuos ∀(x)∈S

(2.12)

Remark 2.2 The structure of the composite strain tensor Eq. (2.12) can be expressed as the sum of a term including

only regular part ˙̄ǫc and a term which includes a singular part Jǫ̇cK.
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3

Composite discrete constitutive equation

T
He aim of this chapter is compute a composite discrete constitutive equation. For this purpose it is necessary

use the composite discrete traction vector Section(3.1), as well as the discrete free energy Section(3.2) and

the strong discontinuity conditions for the composite material Section(3.3) .

3.1 Composite discrete constitutive equation

We start this section by considering a given point of the interface S, at which each point is made up by a

(plain concrete) matrix and steel bars (fibers). The key point is to consider various phenomena that occur at each

material point, when the matrix moves in one step to tensile stress states, and in another step to compressive

stress states, due to multiple-cracks formation mechanisms. These phenomena are complex and highly non-

linear unfortunately. To model numerically the reinforced concrete, we need to incorporate the three effects

of each fiber that made up the composite material. However unlike previous works, the composite discrete

traction vector, will have information with multiple surface of failure activate.Thus the composite stresses and

the composite strains given by the kinematics can incorporate as follows:

σc =km
qS

rS
C

em

:

[

(ǭ+
1

h
(

Ns∑

β=1

∆JuβK(x, t))⊗nβ)s −∆λPm ∂ g Pm

∂σm

]

+

nf
∑∑∑

f=1

k f

[

E f
r r

(

ε f
r r
−∆λP f ∂ f P f

r r

∂ σ f
r r

)

[r f ⊗ r f ]+

2G f
rs

(

ε f
rs
−∆λP f ∂ f P f

rs

∂ σ f
rs

)

[r f ⊗ s f ]s + 2G f
r t

(

ε f
r t
−∆λP f ∂ f P f

r t

∂ σ f
r t

)

[r f ⊗ t f ]s

]

(3.1)

So, we now consider for t > tSD the strong discontinuity regime for the composite material, i.e., when

h≡ k→ 0. Multiply the above equation by the normal vector we arrive at:

T
cβ

S
= σcβ

S
.nβ = lim

h→0
km

qS

rS
nβ .Cem

:

[

ǭ+
1

h
(∆JuβK(x, t)⊗nβ )s −∆λPm ∂ g Pm

∂σm

]

+

nf
∑∑∑

f=1

k f

[

E f
r r

(

ε f
r r
−∆λP f ∂ f P f

r r

∂ σ f
r r

)

nβ .[r f ⊗ r f ] + 2G f
rs

(

ε f
rs
−∆λP f ∂ f P f

rs

∂ σ f
rs

)

nβ .[r f ⊗ s f ]s + 2G f
r t

(

ε f
r t
−∆λP f ∂ f P f

r t

∂ σ f
r t

)

nβ .[r f ⊗ t f ]s

]

(3.2)

and after some algebraic operations with bandwidth h we obtain:

T
cβ

S
= σcβ

S
.nβ = lim

h→0

1

hrS
kmqSn

β .Cem

:

[

hǭ+ (∆JuβK(x, t)⊗nβ )s − h∆λPm ∂ g Pm

∂σm

︸ ︷︷ ︸

ǫPm

]

+

nf
∑∑∑

f=1

k f

[

E f
r r

(

ε f
r r
−∆λP f ∂ f P f

r r

∂ σ f
r r

)

nβ .[r f ⊗ r f ] + 2G f
rs

(

ε f
rs
−∆λP f ∂ f P f

rs

∂ σ f
rs

)

nβ .[r f ⊗ s f ]s + 2G f
r t

(

ε f
r t
−∆λP f ∂ f P f

r t

∂ σ f
r t

)

nβ .[r f ⊗ t f ]s

]

(3.3)
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26 3. Composite discrete constitutive equation

So the point to emphasize is that if the plasticity model of the matrix in compression is characterised by

a hardening law, then it is possible to induce a stable response in the material, by neglecting the term that

contains h (bandwidth) which affects the plastic deformation as follows:

T
cβ

S
= σcβ

S
.nβ = lim

h→0

1

hrS
kmqSn

β .Cem

: (∆JuβK(x, t)⊗nβ )s +

nf
∑∑∑

f=1

k f

[

E f
r r

(

ε f
r r
−∆λP f ∂ f P f

r r

∂ σ f
r r

)

nβ .[r f ⊗ r f ]+

2G f
rs

(

ε f
rs
−∆λP f ∂ f P f

rs

∂ σ f
rs

)

nβ .[r f ⊗ s f ]s + 2G f
r t

(

ε f
r t
−∆λP f ∂ f P f

r t

∂ σ f
r t

)

nβ .[r f ⊗ t f ]s

]

(3.4)

Then by rearranging the term of normal propagation direction of the fracture multiple surface nβ , it is

possible find the acoustic tensor of the matrix Qme
through the following expression:

T
cβ

S
= σcβ

S
.nβ = lim

h→0

1

hrS
kmqS (n

β .Cem

.nβ )
︸ ︷︷ ︸

Qme

.∆JuβK(x, t) +

nf
∑∑∑

f =1

k f

[

E f
r r

(

ε f
r r
−∆λP f ∂ f P f

r r

∂ σ f
r r

)

nβ .[r f ⊗ r f ]+

2G f
rs

(

ε f
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−∆λP f ∂ f P f

rs

∂ σ f
rs

)

nβ .[r f ⊗ s f ]s + 2G f
r t

(

ε f
r t
−∆λP f ∂ f P f

r t

∂ σ f
r t

)

nβ .[r f ⊗ t f ]s

]

(3.5)

Finally, we can obtain the general expression for the traction vector of the reinforced concrete Tcβ

S
in Eq.

(3.6)

Box 3.1: General expression for the traction vector of the composite material

T
cβ

S
= σcβ

S
.nβ = lim

h→0

1

hrS
kmqSQ

me

.∆JuβK(x, t)

︸ ︷︷ ︸

Term 1

+nβ .

[
nf
∑∑∑

f=1

k f

[

E f
r r

(

ε f
r r
−∆λP f ∂ f P f

r r

∂ σ f
r r

)

[r f ⊗ r f ]+

︸ ︷︷ ︸

Term 2

2G f
rs

(

ε f
rs
−∆λP f ∂ f P f

rs

∂ σ f
rs

)

[r f ⊗ s f ]s + 2G f
r t

(

ε f
r t
−∆λP f ∂ f P f

r t

∂ σ f
r t

)

[r f ⊗ t f ]s

]]

︸ ︷︷ ︸

cont.Term 2

(3.6)

Proposition 3.1 Find the discrete internal variable for the behaviour of the matrix using the isotropic damage

model, employed in the behaviour of the composite material.

In order to explain Eq. (3.6), and find the discrete internal variables, we follow the flow of the above eq. in

the same order and very close to that by Oliver [2] , but incorporating the effects of the reinforcing fibers. The

matrix elastic acoustic tensor is positive definite William and Sobh [4] , so the first term in Eq. (3.6) implies

that, in order for that the traction vector Tc
S

to be bounded, the term over brackets ∆JuK(x, t) must be different

than zero, ∆JuK(x, t) 6= 0. Therefore fulfillment of the mathematical consistency of the first term in Eq. (3.6)

implies that:

lim
h→0

hrS 6= 0 iff ∆JuK(x, t) 6= 0 (3.7)

while Eq. (3.7) , it is to define the evolution of the internal variables rS, qS, in rate form, to be bounded,

depending on a bounded discrete internal variable ᾱ, for the behavior of the matrix, as follows:
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Lemma 3.1 Let us consider the evolution of rS in Eq. (3.8)

ṙS =
1

h
˙̄α ∀t > tSD (3.8)

in which, ᾱ= 0 ∀t ≤ tSD.

Proof 3.1 In the same manner like the strain composite tensor, the discrete internal variable rS, can be integrated,

for a given time t ≥ tSD:

rS =

∫ t

0

ṙSdt= rW D +

∫ tSD

tW D

1

h(τσm)
˙̄α dτσm

︸ ︷︷ ︸

:=rSD

+

∫ t

tSD

1

h
︸︷︷︸

h≡k

˙̄α dτσm

︸ ︷︷ ︸

:=rconst

= rSD +
1

h(τσm)

∫ t

tSD

˙̄α dτσm

︸ ︷︷ ︸

:=∆ᾱ

(3.9)

where the internal variable rSD in time of strong discontinuity can be defined by:

rSD = rW D +

∫ tSD

tW D

1

h(τσm)
˙̄α dτσm (3.10)

and the increment of the discrete internal variable ∆ᾱ is defined by the following expression:

∆ᾱ=

∫ t

tSD

˙̄α dτσm (3.11)

Thus, the key point to take into account is that the mechanism of formation of a strong discontinuity, consists in

the evolution of the bandwidth h(t), decreasing until collapse in k, h≡ k, being k a value as small as the precision

of the machine will allows. Then, rconst , has the following form:

rconst =
1

k
∆ᾱ (3.12)

Given that h lies in k in the time of strong discontinuity , we can substituting the Eqs.(3.10) and (3.11) as in

Eq. (3.7) , in the following way:

lim
h→0

hrSD = lim
k→0

krSD = krW D +
k

h(τσm)
∆ᾱ 6= 0 (3.13)

which is a bounding expression. With this in the mind, we are finally able to prove that that the law of evolution

of the internal variable ṙS Eq. (3.8) , that fulfill the condition Eq. (3.7) and making the first term in Eq. (3.6)

(matrix behaviour), is compatible with ∆JuK(x, t) 6= 0, we again substitute the Eqs. (3.10) to (3.13) back in Eq.

(3.7):

lim
h→0

hrS = hrSD + hrconnst = h
1

h
∆ᾱ=∆ᾱ 6= 0 (3.14)

which is also a bound expression.

Corollary 3.1 In view of Eq. (3.14) , an important corollary to this result is that:

lim
h→0

hrS =∆ᾱ (3.15)
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�

For the matrix model (discrete damage model) to be complete, it is necessary to incorporate the hardening-

softening rule as follows:

q̇S =
∂ q

∂ r
ṙS (3.16)

However, substituting Eq. (3.8) into Eq. (3.16) yields

q̇S =
∂ q

∂ r

1

h
˙̄α (3.17)

As demonstrated in Proof 3.1 , ṙS is a function of ˙̄α and is bounded. Therefore, we can conclude that q̇S
is also bounded, at the time of strong discontinuity

lim
h→0

∂ q

∂ r

1

h
= Hm

1

h
= H̄m (3.18)

into which the discrete softening parameter for the matrix H̄m is incorporated.

Corollary 3.2 Another important corollary to this result is that, for the above equation to be fulfilled, it is possible

to obtain the continuum softening parameter for the matrix Hm , in terms of the bandwidth h and the discrete

softening parameter H̄m parameters, by the following expression:

H
m(t) = h(t)H̄m ∀t ≥ tW D (3.19)

if the expression Eq. (3.18) is substituted into Eq. (3.17) , we can obtain in a natural manner a discrete

softening law

q̇S = H̄ ˙̄α qS ∈ [o, r0] ∀t ≥ tSD (3.20)

Which, in turn can also be integrated as in Eq. (3.9)

qS = q̄(∆ᾱ) = qSD +

∫ t

tSD

H̄ ˙̄α dτσm (3.21)

Remark 3.1 For the tractions vector of composite constitutive model to be complete, it is necessary to analyze the

second term in Eq. (3.6), i.e. the behaviour of the fibers. However, the fiber model is equipped with a hardening law,

(but with H f = 0), in order to induce a stable material response consistent with the behavior of fibers, preventing

the second term in Eq. (3.6) , from causing the onset of displacement jumps in the composite model, i.e. the cause

of the softening of the composite material is the matrix (plain concrete -damage model). This point having been

clarified, the traction vector Tc
S
, can be obtained by substituting Eq. (3.15) into Eq. (3.6) , thus yielding:
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Box 3.2: Final expression for the traction vector of the composite material

T
cβ

S
= σcβ

S
.nβ =km

[ qS

∆ᾱ
Qme

.∆JuβK(x, t)
]

+nβ .

[
nf
∑∑∑

f=1

k f

[

E f
r r

(

ε f
r r
−∆λP f ∂ f P f

r r

∂ σ f
r r

)

[r f ⊗ r f ]+

2G f
rs

(

ε f
rs
−∆λP f ∂ f P f

rs

∂ σ f
rs

)

[r f ⊗ s f ]s + 2G f
r t

(

ε f
r t
−∆λP f ∂ f P f

r t

∂ σ f
r t

)

[r f ⊗ t f ]s

]]

(3.22)

3.2 Discrete free energy for the composite material

Let us now consider the discrete free energy for the composite material using a free energy function for a

given particle, situated at the discontinuity interface S, considering the composite kinematics described in the

previous chapter:

ψc(εc , r,αPm

,θ
nf

f =1[r
f
r r

, r f
rs

, r f
r t
])|x∈S =ψ

c
S
(εc
S
, rS,α

Pm

,θ
nf

f=1[r
f
r r

, r f
rs

, r f
r t
])

=ψc
S
(ǭc +

1

k
(

NS∑

β=1

∆JuβK⊗nβ )s, rS,α
Pm

,θ
nf

f=1[r
f
r r

, r f
rs

, r f
r t
])

= ψ̂c
S
(ǭc ,∆JuβK, rS,α

Pm

,θ
nf

f=1[r
f
r r

, r f
rs

, r f
r t
]) (3.23)

The symbol θ
nf

f=1 in Eq. (3.23) is used only to represent the multiple fibers embedded in composite material.

With the above eq. in the mind, is straightforward to substitute this expression as:

ψ̂c
S
= kmψm

S
+

nf
∑∑∑

f=1

k fψ f

= km

[
qS

rS
ψ0(ǭc +

1

k
(

NS∑

β=1

∆JuβK⊗nβ )s

︸ ︷︷ ︸

ǫc
S

) +ψp(αm)

]

+

nf
∑∑∑

f=1

k f

[
1

2
εe f

E f εe f

+ψp(r f
r r
)

︸ ︷︷ ︸

axial effect

· · ·

+
1

2
εe f

E f εe f

+ψp(r f
rs
)

︸ ︷︷ ︸

shear effect

+
1

2
εe f

E f εe f

+ψp(r f
r t
)

︸ ︷︷ ︸

shear effect

]

(3.24)

For convenience, let us to obtain the derivative of ǫc
S

with respect to ∆JuK as follows:

∂ ǫc
S

∂∆JuβK
=

∂

[

1

2h
∆JuβK⊗nβ +nβ ⊗∆JuβK

]

∂∆JuβK

=
1

2h
(1⊗nβ +nβ ⊗ 1) =

1

h
(1⊗nβ )s (3.25)

Now, it is really simple to obtain the derivative of ψ̂c
S

with respect to ∆JuK by incorporating the composite

stress tensor and Eq. (3.25):

Copyright c© 2013 Universidad Autónoma de Nuevo León.



30 3. Composite discrete constitutive equation

∂ ψ̂c
S

∂∆JuβK
=
∂ ψ̂c
S

∂ ǫc
S

︸ ︷︷ ︸

σcβ

S

:
∂ ǫc
S

∂∆JuβK
=

1

h
σcβ

S
.nβ =

1

h
T

cβ

S
(3.26)

Given that h lies in k in the time of strong discontinuity, of Eq. (3.26) , it is simple to obtain that:

T
cβ

S
=
∂ [limh→0 hψ̂c

S
]

∂∆JuβK
=

∂ [ϕc
S
]

∂∆JuβK
(3.27)

in which the composite discrete free energy ϕc
S
= limh→0 hψ̂c

S
has been considered.

3.3 Composite strong discontinuity conditions

As shown in Section(3.1) and Section(3.2) , the discrete composite traction vector Tc
S
, as well as, the discrete

composite free energy ϕc
S

according to that proposed by Simo et al. [3] , where the only significant difference

is the incorporation of the mechanical behavior of reinforced concrete. However, in order to find the so-called

composite strong discontinuity equation, as in Oliver [1] , it is necessary to obtain an expression, in terms of

σc
S

and ∆JuK, to fulfill such a condition in terms of ǫc
S
. Neglecting the term of the matrix plastic deformation

ǫPm

= ∆λPm ∂ gPm

∂σm in compression, by performing some algebraic operations with the bandwidth h, for t > tSD

we are able to obtain:

σcβ

S
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)

[r f ⊗ t f ]s

]

(3.28)

Now, we can use the Corollary 3.1 (Eq. (3.15)) in Eq. (3.28) as follows:

Box 3.3: General expression for the composite material discrete stress tensor

σcβ

S
=km

qS

∆ᾱ
Cme
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nf
∑∑∑

f=1

k f

[

E f
r r

(

ε f
r r
−∆λP f ∂ f P f

r r
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)
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)
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]

(3.29)

Finally, by means of some algebraic operations it is possible to obtain a general expression which provides

a relationship between (∆JuK(x, t) and σc
S
, which must be fulfilled for all t ≥ tSD:
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Box 3.4: General expression for the composite material multiple surface equation

(∆JuβK(x, t)⊗n)s =km−1 ∆ᾱ

qS
Cme−1

:

[

σcβ

S
−

nf
∑∑∑

f=1

k f

[

E f
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ε f
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∂ σ f
r r

)

[r f ⊗ r f ]+
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(

ε f
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∂ σ f
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)
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(

ε f
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)
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]]

(3.30)
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4

Conclusions, final remarks and outline for future work

I
In the context of rate independent solids a framework has been established to study of the phenomena of

multiple localization surfaces of failure. To this end, we present the strain localization problems in three-

dimensional RC members. A necessary condition for that this phenomenon occurs is the loss of ellipticity of

the composite acoustic tensor. However, when we add the reinforcement fibers, these fibers have a effect of

close the cracks and not allow the crack evolves, therefore it is important to mention that, each fiber evolve

mechanically until plasticize, once plasticize, the softening is not allowed. Allowing the matrix is responsible

for obtaining the material failure process. Another mechanical problem when trying to model numerically(RC)

members, is the introduction of steel stirrups. These steel stirrups generate a core the high strength inside of

the structural member. For this reason, we using in this part the composite constitutive model design during my

Ph.d, where this core is modeled by an elasto-plastic-damage behavior, and we incorporate multiple fibers in

different directions (modeled by elasto-plastic behavior of each fiber that make up this material point).At this

point it is worth noting that, the mechanical behavior of each compound of the composite material, is modeled

separately, and the global response is obtained by an assembly of all contributions, by means the use of the rule

of mixture theory. For this reason, is important introduce in an adequate manner the field of the displacement.

In another words, if we consider the phenomena of multiple surface of failure, the composite discrete traction

vector change, and is a compulsory condition, in order to establish a general framework, so, several directions

of future works suggest themselves:

• This work has been carried out for rate independent, isothermal solids. One natural extension would be to

include rate and thermal effects and solve the coupled thermo-mechanical problem.

• Also this work was carried only in the small deformation regime, for that reason it would be interesting to

address the issue of large deformations, in search of a bifurcation time most precise.

• A new tracking algorithm for the cracks applied to the composite material, and the dynamic problem, and

see what happens with the phenomenon of branching in members of reinforced concrete.

• For that the structural curve is more adjusted, the mechanical behavior of aggregate can be consider.

• However, the most important point to comment is: it is possible generate a new framework, in the

line of two-scale homogenization scheme: The FE2. To this end, could be interesting see how is the

form of the composite discrete traction vector in a micro-scale manner.
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